Revisiting one-dimensional discrete-time quantum walks with general coin

被引:2
|
作者
Jayakody, Mahesh N. [1 ,2 ]
Meena, Chandrakala [3 ,5 ]
Pradhan, Priodyuti [4 ,5 ]
机构
[1] Bar Ilan Univ, Fac Engn, IL-5290002 Ramat Gan, Israel
[2] Bar Ilan Univ, Inst Nanotechnol & Adv Mat, IL-5290002 Ramat Gan, Israel
[3] Indian Inst Sci Educ & Res Thiruvananthapuram, Dept Phys, Thiruvananthapuram 695551, Kerala, India
[4] Indian Inst Informat Technol Raichur, Dept Comp Sci & Engn, Networks Ai Lab, Raichur 584135, Karnataka, India
[5] Bar Ilan Univ, Dept Math, Ramat Gan 5290002, Israel
关键词
Quantum walk; Hadamard coin; Grover coin; Fourier coin; Quantum entanglement; LIMIT-THEOREMS;
D O I
10.1016/j.physo.2023.100189
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum walk (QW) is the quantum analog of the random walk. QW is an integral part of the development of numerous quantum algorithms. Hence, an in-depth understanding of QW helps us to grasp the quantum algorithms. We revisit the one-dimensional discrete-time QW and discuss basic steps in detail by incorporating the most general coin operator, constant in both space and time, and a localized initial state using numerical modeling. We investigate the impact of each parameter of the general coin operator on the probability distribution of the quantum walker. We show that by tuning the parameters of the general coin, one can regulate the probability distribution of the walker. We provide an algorithm for the one-dimensional quantum walk driven by the general coin operator. The study on general coin operators also includes the popular coins - Hadamard, Grover, and Fourier.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Borromean states in discrete-time quantum walks
    Markiewicz, Marcin
    Karczewski, Marcin
    Kurzynski, Pawel
    QUANTUM, 2021, 5
  • [42] ENTANGLEMENT FOR DISCRETE-TIME QUANTUM WALKS ON THE LINE
    Ide, Yusuke
    Konno, Norio
    Machida, Takuya
    QUANTUM INFORMATION & COMPUTATION, 2011, 11 (9-10) : 855 - 866
  • [43] Photonic Discrete-time Quantum Walks and Applications
    Neves, Leonardo
    Puentes, Graciana
    ENTROPY, 2018, 20 (10):
  • [44] Photonic discrete-time quantum walks [Invited]
    Zhu, Gaoyan
    Xiao, Lei
    Huo, Bingzi
    Xue, Peng
    CHINESE OPTICS LETTERS, 2020, 18 (05)
  • [45] CROSSOVERS INDUCED BY DISCRETE-TIME QUANTUM WALKS
    Chisaki, Kota
    Konno, Norio
    Segawa, Etsuo
    Shikano, Yutaka
    QUANTUM INFORMATION & COMPUTATION, 2011, 11 (9-10) : 741 - 760
  • [46] Discrete-time quantum walks in qudit systems
    Saha, Amit
    Saha, Debasri
    Chakrabarti, Amlan
    EUROPEAN PHYSICAL JOURNAL PLUS, 2024, 139 (11):
  • [47] Photonic discrete-time quantum walks [Invited]
    朱高岩
    肖磊
    霍丙子
    薛鹏
    ChineseOpticsLetters, 2020, 18 (05) : 82 - 95
  • [48] Rogue waves in discrete-time quantum walks
    Buarque, A. R. C.
    Dias, W. S.
    de Moura, F. A. B. F.
    Lyra, M. L.
    Almeida, G. M. A.
    PHYSICAL REVIEW A, 2022, 106 (01)
  • [49] Discrete-time quantum walks and graph structures
    Godsil, Chris
    Zhan, Hanmeng
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2019, 167 : 181 - 212
  • [50] Discrete-Time Quantum Walks on Oriented Graphs
    Chagas, Bruno
    Portugal, Renato
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2020, (315): : 26 - 37