Revisiting one-dimensional discrete-time quantum walks with general coin

被引:2
|
作者
Jayakody, Mahesh N. [1 ,2 ]
Meena, Chandrakala [3 ,5 ]
Pradhan, Priodyuti [4 ,5 ]
机构
[1] Bar Ilan Univ, Fac Engn, IL-5290002 Ramat Gan, Israel
[2] Bar Ilan Univ, Inst Nanotechnol & Adv Mat, IL-5290002 Ramat Gan, Israel
[3] Indian Inst Sci Educ & Res Thiruvananthapuram, Dept Phys, Thiruvananthapuram 695551, Kerala, India
[4] Indian Inst Informat Technol Raichur, Dept Comp Sci & Engn, Networks Ai Lab, Raichur 584135, Karnataka, India
[5] Bar Ilan Univ, Dept Math, Ramat Gan 5290002, Israel
关键词
Quantum walk; Hadamard coin; Grover coin; Fourier coin; Quantum entanglement; LIMIT-THEOREMS;
D O I
10.1016/j.physo.2023.100189
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum walk (QW) is the quantum analog of the random walk. QW is an integral part of the development of numerous quantum algorithms. Hence, an in-depth understanding of QW helps us to grasp the quantum algorithms. We revisit the one-dimensional discrete-time QW and discuss basic steps in detail by incorporating the most general coin operator, constant in both space and time, and a localized initial state using numerical modeling. We investigate the impact of each parameter of the general coin operator on the probability distribution of the quantum walker. We show that by tuning the parameters of the general coin, one can regulate the probability distribution of the walker. We provide an algorithm for the one-dimensional quantum walk driven by the general coin operator. The study on general coin operators also includes the popular coins - Hadamard, Grover, and Fourier.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] General condition of quantum teleportation by one-dimensional quantum walks
    Yamagami, Tomoki
    Segawa, Etsuo
    Konno, Norio
    QUANTUM INFORMATION PROCESSING, 2021, 20 (07)
  • [22] General condition of quantum teleportation by one-dimensional quantum walks
    Tomoki Yamagami
    Etsuo Segawa
    Norio Konno
    Quantum Information Processing, 2021, 20
  • [23] Limitations of discrete-time quantum walk on a one-dimensional infinite chain
    Lin, Jia-Yi
    Zhu, Xuanmin
    Wu, Shengjun
    PHYSICS LETTERS A, 2018, 382 (13) : 899 - 903
  • [24] The uniform measure for discrete-time quantum walks in one dimension
    Norio Konno
    Quantum Information Processing, 2014, 13 : 1103 - 1125
  • [26] One-Dimensional Discrete-Time Phase Retrieval
    Beinert, Robert
    Plonka, Gerlind
    NANOSCALE PHOTONIC IMAGING, 2020, 134 : 603 - 627
  • [27] One-Dimensional Continuous-Time Quantum Walks
    D. ben-Avraham
    E.M. Bollt
    C. Tamon
    Quantum Information Processing, 2004, 3 : 295 - 308
  • [28] One-Dimensional Continuous-Time Quantum Walks
    ben-Avraham, D.
    Bollt, E. M.
    Tamon, C.
    QUANTUM INFORMATION PROCESSING, 2004, 3 (1-5) : 295 - 308
  • [29] Discrete-time quantum walks generated by aperiodic fractal sequence of space coin operators
    Andrade, R. F. S.
    Souza, A. M. C.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2018, 29 (10):
  • [30] One-dimensional quantum walks with a general perturbation of the radius 1
    Ryazanov, M., V
    Zamyatin, A. A.
    MARKOV PROCESSES AND RELATED FIELDS, 2018, 24 (02) : 255 - 272