Revisiting one-dimensional discrete-time quantum walks with general coin

被引:2
|
作者
Jayakody, Mahesh N. [1 ,2 ]
Meena, Chandrakala [3 ,5 ]
Pradhan, Priodyuti [4 ,5 ]
机构
[1] Bar Ilan Univ, Fac Engn, IL-5290002 Ramat Gan, Israel
[2] Bar Ilan Univ, Inst Nanotechnol & Adv Mat, IL-5290002 Ramat Gan, Israel
[3] Indian Inst Sci Educ & Res Thiruvananthapuram, Dept Phys, Thiruvananthapuram 695551, Kerala, India
[4] Indian Inst Informat Technol Raichur, Dept Comp Sci & Engn, Networks Ai Lab, Raichur 584135, Karnataka, India
[5] Bar Ilan Univ, Dept Math, Ramat Gan 5290002, Israel
关键词
Quantum walk; Hadamard coin; Grover coin; Fourier coin; Quantum entanglement; LIMIT-THEOREMS;
D O I
10.1016/j.physo.2023.100189
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum walk (QW) is the quantum analog of the random walk. QW is an integral part of the development of numerous quantum algorithms. Hence, an in-depth understanding of QW helps us to grasp the quantum algorithms. We revisit the one-dimensional discrete-time QW and discuss basic steps in detail by incorporating the most general coin operator, constant in both space and time, and a localized initial state using numerical modeling. We investigate the impact of each parameter of the general coin operator on the probability distribution of the quantum walker. We show that by tuning the parameters of the general coin, one can regulate the probability distribution of the walker. We provide an algorithm for the one-dimensional quantum walk driven by the general coin operator. The study on general coin operators also includes the popular coins - Hadamard, Grover, and Fourier.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Discrete-time quantum walks on one-dimensional lattices
    Xu, X. -P.
    EUROPEAN PHYSICAL JOURNAL B, 2010, 77 (04): : 479 - 488
  • [2] Discrete-time quantum walks on one-dimensional lattices
    X.-P. Xu
    The European Physical Journal B, 2010, 77 : 479 - 488
  • [4] Discrete-Time Quantum Walks of the One-Dimensional Dirac Oscillator
    Siyong Jia
    Delong Jia
    Ziteng Song
    Junjun Xu
    Journal of Low Temperature Physics, 2022, 209 : 44 - 53
  • [5] Discrete-Time Quantum Walks of the One-Dimensional Dirac Oscillator
    Jia, Siyong
    Jia, Delong
    Song, Ziteng
    Xu, Junjun
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2022, 209 (1-2) : 44 - 53
  • [6] One-dimensional discrete-time quantum walks on random environments
    Norio Konno
    Quantum Information Processing, 2009, 8 : 387 - 399
  • [7] Quantum state engineering using one-dimensional discrete-time quantum walks
    Innocenti, Luca
    Majury, Helena
    Giordani, Taira
    Spagnolo, Nicolo
    Sciarrino, Fabio
    Paternostro, Mauro
    Ferraro, Alessandro
    PHYSICAL REVIEW A, 2017, 96 (06)
  • [8] Quantum walks with a one-dimensional coin
    Bisio, Alessandro
    D'Ariano, Giacomo Mauro
    Erba, Marco
    Perinotti, Paolo
    Tosini, Alessandro
    PHYSICAL REVIEW A, 2016, 93 (06)
  • [9] RETURN PROBABILITY OF ONE-DIMENSIONAL DISCRETE-TIME QUANTUM WALKS WITH FINAL-TIME DEPENDENCE
    Ide, Yusuke
    Konno, Norio
    Machida, Takuya
    Segawa, Etsuo
    QUANTUM INFORMATION & COMPUTATION, 2011, 11 (9-10) : 761 - 773
  • [10] The sojourn times of one dimensional discrete-time quantum walks
    Cai, Shuiying
    Huang, Qingyu
    Ye, Yiwen
    Wen, Yongxian
    Lin, Yunguo
    LASER PHYSICS LETTERS, 2023, 20 (09)