SuperDriverAI: Towards Design and Implementation for End-to-End Learning-based Autonomous Driving

被引:0
|
作者
Aoki, Shunsuke [1 ,2 ]
Yamamoto, Issei [2 ]
Shiotsuka, Daiki [2 ]
Inoue, Yuichi [2 ]
Tokuhiro, Kento [2 ]
Miwa, Keita [2 ]
机构
[1] Natl Inst Informat, Tokyo, Japan
[2] TURING Inc, Tokyo, Japan
关键词
D O I
10.1109/VNC57357.2023.10136277
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Fully autonomous driving has been widely studied and is becoming increasingly feasible. However, such autonomous driving has yet to be achieved on public roads, because of various uncertainties due to surrounding human drivers and pedestrians. In this paper, we present an end-to-end learning-based autonomous driving system named SuperDriver AI, where Deep Neural Networks (DNNs) learn the driving actions and policies from the experienced human drivers and determine the driving maneuvers to take while guaranteeing road safety. In addition, to improve robustness and interpretability, we present a slit model and a visual attention module. We build a data-collection system and emulator with real-world hardware, and we also test the SuperDriver AI system with real-world driving scenarios. Finally, we have collected 150 runs for one driving scenario in Tokyo, Japan, and have shown the demonstration of SuperDriver AI with the real-world vehicle.
引用
收藏
页码:195 / 198
页数:4
相关论文
共 50 条
  • [41] End-to-End Learning-Based Image Compression: A Review
    Chen Jimin
    Lin Zehao
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (22)
  • [42] End-to-end autonomous driving based on the convolution neural network model
    Zhao, Yuanfang
    Chen, Yunli
    2019 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2019, : 419 - 423
  • [43] An Approach for Reliable End-to-End Autonomous Driving based on the Simplex Architecture
    Kwon, Seong Kyung
    Seo, Ji Hwan
    Lee, Jin-Woo
    Kim, Kyoung-Dae
    2018 15TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV), 2018, : 1851 - 1856
  • [44] A Hierarchical Temporal Memory Based End-to-End Autonomous Driving System
    Le Mero, Luc
    Dianati, Mehrdad
    Lee, Graham
    Journal of Autonomous Vehicles and Systems, 2022, 2 (04):
  • [45] Generative Adversarial Imitation Learning for End-to-End Autonomous Driving on Urban Environments
    Karl Couto, Gustavo Claudio
    Antonelo, Eric Aislan
    2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
  • [46] Recent Advancements in End-to-End Autonomous Driving Using Deep Learning: A Survey
    Chib, Pranav Singh
    Singh, Pravendra
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2024, 9 (01): : 103 - 118
  • [47] Communication Resources Constrained Hierarchical Federated Learning for End-to-End Autonomous Driving
    Kou, Wei-Bin
    Wang, Shuai
    Zhu, Guangxu
    Luo, Bin
    Chen, Yingxian
    Ng, Derrick Wing Kwan
    Wu, Yik-Chung
    2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2023, : 9383 - 9390
  • [48] Interpretable End-to-End Urban Autonomous Driving With Latent Deep Reinforcement Learning
    Chen, Jianyu
    Li, Shengbo Eben
    Tomizuka, Masayoshi
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (06) : 5068 - 5078
  • [49] End-to-end Learning Approach for Autonomous Driving: A Convolutional Neural Network Model
    Wang, Yaqin
    Liu, Dongfang
    Jeon, Hyewon
    Chu, Zhiwei
    Matson, Eric T.
    PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE (ICAART), VOL 2, 2019, : 833 - 839
  • [50] Visual Explanation by Attention Branch Network for End-to-end Learning-based Self-driving
    Mori, Keisuke
    Fukui, Hiroshi
    Murase, Takuya
    Hirakawa, Tsubasa
    Yamashita, Takayoshi
    Fujiyoshi, Hironobu
    2019 30TH IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV19), 2019, : 1577 - 1582