Recent Advancements in End-to-End Autonomous Driving Using Deep Learning: A Survey

被引:43
|
作者
Chib, Pranav Singh [1 ]
Singh, Pravendra [1 ]
机构
[1] Indian Inst Technol Roorkee, Dept Comp Sci & Engn, Roorkee 247667, India
来源
关键词
Autonomous vehicles; Pipelines; Navigation; Task analysis; Surveys; Laser radar; Computer architecture; Autonomous driving; end-to-end driving; intelligent transportation system; deep learning; VISION;
D O I
10.1109/TIV.2023.3318070
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
End-to-End driving is a promising paradigm as it circumvents the drawbacks associated with modular systems, such as their overwhelming complexity and propensity for error propagation. Autonomous driving transcends conventional traffic patterns by proactively recognizing critical events in advance, ensuring passengers safety and providing them with comfortable transportation, particularly in highly stochastic and variable traffic settings. This article presents a comprehensive review of the End-to-End autonomous driving stack. It provides a taxonomy of automated driving tasks wherein neural networks have been employed in an End-to-End manner, encompassing the entire driving process from perception to control. Recent developments in End-to-End autonomous driving are analyzed, and research is categorized based on underlying principles, methodologies, and core functionality. These categories encompass sensorial input, main and auxiliary output, learning approaches ranging from imitation to reinforcement learning, and model evaluation techniques. The survey incorporates a detailed discussion of the explainability and safety aspects. Furthermore, it assesses the state-of-the-art, identifies challenges, and explores future possibilities.
引用
收藏
页码:103 / 118
页数:16
相关论文
共 50 条
  • [1] Autonomous Driving Control Using End-to-End Deep Learning
    Lee, Myoung-jae
    Ha, Young-guk
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP 2020), 2020, : 470 - 473
  • [2] End-to-end Autonomous Driving: Advancements and Challenges
    Chu, Duan-Feng
    Wang, Ru-Kang
    Wang, Jing-Yi
    Hua, Qiao-Zhi
    Lu, Li-Ping
    Wu, Chao-Zhong
    Zhongguo Gonglu Xuebao/China Journal of Highway and Transport, 2024, 37 (10): : 209 - 232
  • [3] Agile Autonomous Driving using End-to-End Deep Imitation Learning
    Pan, Yunpeng
    Cheng, Ching-An
    Saigol, Kamil
    Lee, Keuntaek
    Yan, Xinyan
    Theodorou, Evangelos A.
    Boots, Byron
    ROBOTICS: SCIENCE AND SYSTEMS XIV, 2018,
  • [4] End-to-End Deep Conditional Imitation Learning for Autonomous Driving
    Abdou, Mohammed
    Kamal, Hanan
    El-Tantawy, Samah
    Abdelkhalek, Ali
    Adel, Omar
    Hamdy, Karim
    Abaas, Mustafa
    31ST INTERNATIONAL CONFERENCE ON MICROELECTRONICS (IEEE ICM 2019), 2019, : 346 - 350
  • [5] End-to-End Autonomous Driving in CARLA: A Survey
    Al Ozaibi, Youssef
    Hina, Manolo Dulva
    Ramdane-Cherif, Amar
    IEEE ACCESS, 2024, 12 : 146866 - 146900
  • [6] End-to-end Autonomous Driving in Heterogeneous Traffic Scenario Using Deep Reinforcement Learning
    Chakraborty, Soumyajit
    Kumar, Subhadeep
    Bhatt, Nirav
    Pasumarthy, Ramkrishna
    2023 EUROPEAN CONTROL CONFERENCE, ECC, 2023,
  • [7] End-to-End Autonomous Driving Decision Based on Deep Reinforcement Learning
    Huang, Zhiqing
    Zhang, Ji
    Tian, Rui
    Zhang, Yanxin
    CONFERENCE PROCEEDINGS OF 2019 5TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND ROBOTICS (ICCAR), 2019, : 658 - 662
  • [8] End-to-End Autonomous Driving Decision Based on Deep Reinforcement Learning
    Huang Z.-Q.
    Qu Z.-W.
    Zhang J.
    Zhang Y.-X.
    Tian R.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2020, 48 (09): : 1711 - 1719
  • [9] End-to-end deep learning for reverse driving trajectory of autonomous bulldozer
    You, Ke
    Ding, Lieyun
    Jiang, Yutian
    Wu, Zhangang
    Zhou, Cheng
    KNOWLEDGE-BASED SYSTEMS, 2022, 252
  • [10] Interpretable End-to-End Urban Autonomous Driving With Latent Deep Reinforcement Learning
    Chen, Jianyu
    Li, Shengbo Eben
    Tomizuka, Masayoshi
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (06) : 5068 - 5078