Recent Advancements in End-to-End Autonomous Driving Using Deep Learning: A Survey

被引:43
|
作者
Chib, Pranav Singh [1 ]
Singh, Pravendra [1 ]
机构
[1] Indian Inst Technol Roorkee, Dept Comp Sci & Engn, Roorkee 247667, India
来源
关键词
Autonomous vehicles; Pipelines; Navigation; Task analysis; Surveys; Laser radar; Computer architecture; Autonomous driving; end-to-end driving; intelligent transportation system; deep learning; VISION;
D O I
10.1109/TIV.2023.3318070
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
End-to-End driving is a promising paradigm as it circumvents the drawbacks associated with modular systems, such as their overwhelming complexity and propensity for error propagation. Autonomous driving transcends conventional traffic patterns by proactively recognizing critical events in advance, ensuring passengers safety and providing them with comfortable transportation, particularly in highly stochastic and variable traffic settings. This article presents a comprehensive review of the End-to-End autonomous driving stack. It provides a taxonomy of automated driving tasks wherein neural networks have been employed in an End-to-End manner, encompassing the entire driving process from perception to control. Recent developments in End-to-End autonomous driving are analyzed, and research is categorized based on underlying principles, methodologies, and core functionality. These categories encompass sensorial input, main and auxiliary output, learning approaches ranging from imitation to reinforcement learning, and model evaluation techniques. The survey incorporates a detailed discussion of the explainability and safety aspects. Furthermore, it assesses the state-of-the-art, identifies challenges, and explores future possibilities.
引用
收藏
页码:103 / 118
页数:16
相关论文
共 50 条
  • [41] An End-to-End Motion Planner Using Sensor Fusion for Autonomous Driving
    Thu, Nguyen Thi Hoai
    Han, Dong Seog
    2023 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE IN INFORMATION AND COMMUNICATION, ICAIIC, 2023, : 678 - 683
  • [42] Generative Adversarial Imitation Learning for End-to-End Autonomous Driving on Urban Environments
    Karl Couto, Gustavo Claudio
    Antonelo, Eric Aislan
    2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
  • [43] Communication Resources Constrained Hierarchical Federated Learning for End-to-End Autonomous Driving
    Kou, Wei-Bin
    Wang, Shuai
    Zhu, Guangxu
    Luo, Bin
    Chen, Yingxian
    Ng, Derrick Wing Kwan
    Wu, Yik-Chung
    2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2023, : 9383 - 9390
  • [44] Stabilization Approaches for Reinforcement Learning-Based End-to-End Autonomous Driving
    Chen, Siyuan
    Wang, Meiling
    Song, Wenjie
    Yang, Yi
    Li, Yujun
    Fu, Mengyin
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (05) : 4740 - 4750
  • [45] End-to-end Learning Approach for Autonomous Driving: A Convolutional Neural Network Model
    Wang, Yaqin
    Liu, Dongfang
    Jeon, Hyewon
    Chu, Zhiwei
    Matson, Eric T.
    PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE (ICAART), VOL 2, 2019, : 833 - 839
  • [46] End-to-End Autonomous Exploration with Deep Reinforcement Learning and Intrinsic Motivation
    Ruan, Xiaogang
    Li, Peng
    Zhu, Xiaoqing
    Yu, Hejie
    Yu, Naigong
    Computational Intelligence and Neuroscience, 2021, 2021
  • [47] End-to-End Autonomous Exploration with Deep Reinforcement Learning and Intrinsic Motivation
    Ruan, Xiaogang
    Li, Peng
    Zhu, Xiaoqing
    Yu, Hejie
    Yu, Naigong
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2021, 2021
  • [48] End-to-End Driving in a Realistic Racing Game with Deep Reinforcement Learning
    Perot, Etienne
    Jaritz, Maximilian
    Toromanoff, Marin
    de Charette, Raoul
    2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2017, : 474 - 475
  • [49] End-to-end driving model based on deep learning and attention mechanism
    Zhu, Wuqiang
    Lu, Yang
    Zhang, Yongliang
    Wei, Xing
    Wei, Zhen
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 42 (04) : 3337 - 3348
  • [50] The Elements of End-to-end Deep Face Recognition: A Survey of Recent Advances
    Du, Hang
    Shi, Hailin
    Zeng, Dan
    Zhang, Xiao-Ping
    Mei, Tao
    ACM COMPUTING SURVEYS, 2022, 54 (10S)