Symmetric finite representability of LP-spaces in rearrangement invariant spaces on [0,1]

被引:0
|
作者
Astashkin, Sergey V. [1 ,2 ]
Curbera, Guillermo P. [3 ,4 ]
机构
[1] Samara Natl Res Univ, Dept Math, Moskovskoye Shosse 34, Samara 443086, Russia
[2] Bahcesehir Univ, Dept Math, TR-34353 Istanbul, Turkiye
[3] Univ Seville, Fac Matemat, Calle Tarfia S-N, Seville 41012, Spain
[4] Univ Seville, IMUS, Calle Tarfia S-N, Seville 41012, Spain
来源
REVISTA MATEMATICA COMPLUTENSE | 2024年 / 37卷 / 02期
关键词
L-p; Finite representability; Banach lattice; Rearrangement invariant space; Dilation operator; Shift operator; Boyd indices; Orlicz space; Lorentz space; BANACH; INDEXES;
D O I
10.1007/s13163-023-00464-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a separable rearrangement invariant space X on [0, 1] of fundamental type we identify the set of all p ? [1, 8] such that L-p is finitely represented in X in such a way that the unit basis vectors of L-p (c(0) if p = oo) correspond to pairwise disjoint and equimeasurable functions. This can be treated as a follow up of a paper by the first-named author related to separable rearrangement invariant spaces on (0, 8).
引用
收藏
页码:413 / 434
页数:22
相关论文
共 50 条