Finite partially {0,1}-semiaffine linear spaces

被引:0
|
作者
Durante, N [1 ]
Napolitano, V [1 ]
Olanda, D [1 ]
机构
[1] Dipartimento Matemat & Applicaz R Caccioppoli, I-80126 Naples, Italy
关键词
linear spaces; semiaffine planes;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper finite, partially proper {0, 1}-semiaffine, planes of order n are studied and completely characterized. Finite, partially {0}-semiaffine, planes are completely classified and finite, partially {1}-semiaffine, planes are classified for b less than or equal to n(2) + n + 1.
引用
收藏
页码:113 / 131
页数:19
相关论文
共 50 条
  • [1] Finite Partially {0, 1}-Semiaffine Linear Spaces
    Nicola Durante
    Vito Napolitano
    Domenico Olanda
    Geometriae Dedicata, 1999, 77 (2) : 113 - 131
  • [2] Finite partially {0,2}-semiaffine linear spaces
    Durante, N
    Napolitano, V
    Olanda, D
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 1999, 6 (04) : 541 - 558
  • [3] FINITE SEMIAFFINE LINEAR-SPACES
    BEUTELSPACHER, A
    KERSTEN, A
    ARCHIV DER MATHEMATIK, 1985, 44 (06) : 557 - 568
  • [4] On finite weakly {s, t}-semiaffine linear spaces
    Napolitano, V
    DISCRETE MATHEMATICS, 2002, 255 (1-3) : 325 - 341
  • [5] On finite {s-2, s}-semiaffine linear spaces
    Durante N.
    Journal of Geometry, 2001, 70 (1) : 44 - 58
  • [6] Generalized Semiaffine linear spaces
    Ferrara-Dentice, Eva
    Iannotta, Giusy
    RICERCHE DI MATEMATICA, 2017, 66 (02) : 395 - 406
  • [7] BASES IN SPACES C(0,1) AND L (0,1)
    CHANTURIA, ZA
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1971, 19 (11): : 1013 - +
  • [8] Generalized Semiaffine linear spaces
    Eva Ferrara-Dentice
    Giusy Iannotta
    Ricerche di Matematica, 2017, 66 : 395 - 406
  • [9] Continuous [0,1]-lattices and injective [0,1]-approach spaces
    Yu, Junche
    Zhang, Dexue
    Fuzzy Sets and Systems, 2022, 444 : 49 - 78
  • [10] Continuous [0,1]-lattices and injective [0,1]-approach spaces
    Yu, Junche
    Zhang, Dexue
    FUZZY SETS AND SYSTEMS, 2022, 444 : 49 - 78