Fault Forecasting Using Data-Driven Modeling: A Case Study for Metro do Porto Data Set

被引:1
|
作者
Davari, Narjes [1 ]
Veloso, Bruno [1 ,2 ,4 ]
Ribeiro, Rita P. [1 ,3 ]
Gama, Joao [1 ,4 ]
机构
[1] INESC TEC, P-4200465 Porto, Portugal
[2] Univ Portucalense, P-4200072 Porto, Portugal
[3] Univ Porto, Fac Sci, P-4169007 Porto, Portugal
[4] Univ Porto, Fac Econ, P-4200464 Porto, Portugal
关键词
Anomaly detection; Fault forecasting; System identification; Predictive maintenance; IDENTIFICATION;
D O I
10.1007/978-3-031-23633-4_26
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The demand for high-performance solutions for anomaly detection and forecasting fault events is increasing in the industrial area. The detection and forecasting faults from time-series data are one critical mission in the Internet of Things (IoT) data mining. The classical fault detection approaches based on physical modelling are limited to some measurable output variables. Accurate physical modelling of vehicle dynamics requires substantial prior information about the system. On the other hand, data-driven modelling techniques accurately represent the system's dynamic from data collection. Experimental results on large-scale data sets from Metro do Porto subsystems verify that our method performs high-quality fault detection and forecasting solutions. Also, health indicator obtained from the principal component analysis of the forecasting solution is applied to predict the remaining useful life.
引用
收藏
页码:400 / 409
页数:10
相关论文
共 50 条
  • [41] Multicommodity Prices Prediction Using Multivariate Data-Driven Modeling: Indonesia Case
    Halim, Marsellino Prawiro
    Yudistira, Novanto
    Dewi, Candra
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024, 11 (01): : 478 - 487
  • [42] Data-driven forecasting of embankment settlement on soft soils using CRS tests data
    Wan, Xiao
    Doherty, James
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-GEOTECHNICAL ENGINEERING, 2024,
  • [43] A Data-Driven Solar Irradiance Forecasting Model with Minimum Data
    Lyu, Cheng
    Basumallik, Sagnik
    Eftekharnejad, Sara
    Xu, Chongfang
    2021 IEEE TEXAS POWER AND ENERGY CONFERENCE (TPEC), 2021, : 307 - 312
  • [44] Data-driven fault diagnosis analysis and open-set classification of time-series data
    Lundgren, Andreas
    Jung, Daniel
    CONTROL ENGINEERING PRACTICE, 2022, 121
  • [45] A novel data-driven approach for customizing destination choice set: A case study in the Netherlands
    Zhang, Bin
    Rasouli, Soora
    Feng, Tao
    TRANSPORTATION RESEARCH PART A-POLICY AND PRACTICE, 2024, 190
  • [46] Spatio-Temporal Forecasting: A Survey of Data-Driven Models Using Exogenous Data
    Berkani, Safaa
    Guermah, Bassma
    Zakroum, Mehdi
    Ghogho, Mounir
    IEEE ACCESS, 2023, 11 : 75191 - 75214
  • [47] A Comprehensive Case Study of Data-Driven Methods for Robust Aircraft Sensor Fault Isolation
    Cartocci, Nicholas
    Napolitano, Marcello R.
    Costante, Gabriele
    Fravolini, Mario L.
    SENSORS, 2021, 21 (05) : 1 - 24
  • [48] Data-driven modeling of truck engine exhaust valve failures: A case study
    Yusen He
    Andrew Kusiak
    Tinghui Ouyang
    Wei Teng
    Journal of Mechanical Science and Technology, 2017, 31 : 2747 - 2757
  • [49] Data-driven modeling of truck engine exhaust valve failures: A case study
    He, Yusen
    Kusiak, Andrew
    Ouyang, Tinghui
    Teng, Wei
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2017, 31 (06) : 2747 - 2757
  • [50] Data-Driven Fault Classification Using Support Vector Machines
    Jallepalli, Deepthi
    Kakhki, Fatemeh Davoudi
    INTELLIGENT HUMAN SYSTEMS INTEGRATION 2021, 2021, 1322 : 316 - 322