Fault Forecasting Using Data-Driven Modeling: A Case Study for Metro do Porto Data Set

被引:1
|
作者
Davari, Narjes [1 ]
Veloso, Bruno [1 ,2 ,4 ]
Ribeiro, Rita P. [1 ,3 ]
Gama, Joao [1 ,4 ]
机构
[1] INESC TEC, P-4200465 Porto, Portugal
[2] Univ Portucalense, P-4200072 Porto, Portugal
[3] Univ Porto, Fac Sci, P-4169007 Porto, Portugal
[4] Univ Porto, Fac Econ, P-4200464 Porto, Portugal
关键词
Anomaly detection; Fault forecasting; System identification; Predictive maintenance; IDENTIFICATION;
D O I
10.1007/978-3-031-23633-4_26
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The demand for high-performance solutions for anomaly detection and forecasting fault events is increasing in the industrial area. The detection and forecasting faults from time-series data are one critical mission in the Internet of Things (IoT) data mining. The classical fault detection approaches based on physical modelling are limited to some measurable output variables. Accurate physical modelling of vehicle dynamics requires substantial prior information about the system. On the other hand, data-driven modelling techniques accurately represent the system's dynamic from data collection. Experimental results on large-scale data sets from Metro do Porto subsystems verify that our method performs high-quality fault detection and forecasting solutions. Also, health indicator obtained from the principal component analysis of the forecasting solution is applied to predict the remaining useful life.
引用
收藏
页码:400 / 409
页数:10
相关论文
共 50 条
  • [31] DATA-DRIVEN MODELS FOR FAULT DETECTION USING KERNEL PCA: A WATER DISTRIBUTION SYSTEM CASE STUDY
    Nowicki, Adam
    Grochowski, Michal
    Duzinkiewicz, Kazimierz
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2012, 22 (04) : 939 - 949
  • [32] Comparative case study of life usage and data-driven prognostics techniques using aircraft fault messages
    Baptista, Marcia
    de Medeiros, Ivo P.
    Malere, Joao P.
    Nascimento, Cairo, Jr.
    Prendinger, Helmut
    Henriques, Elsa M. P.
    COMPUTERS IN INDUSTRY, 2017, 86 : 1 - 14
  • [33] Data-driven fault detection for chemical processes using autoencoder with data augmentation
    Hodong Lee
    Changsoo Kim
    Dong Hwi Jeong
    Jong Min Lee
    Korean Journal of Chemical Engineering, 2021, 38 : 2406 - 2422
  • [34] Data-driven fault detection for chemical processes using autoencoder with data augmentation
    Lee, Hodong
    Kim, Changsoo
    Jeong, Dong Hwi
    Lee, Jong Min
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2021, 38 (12) : 2406 - 2422
  • [35] Drought forecasting using data-driven methods and an evolutionary algorithm
    Hosseini-Moghari S.-M.
    Araghinejad S.
    Azarnivand A.
    Modeling Earth Systems and Environment, 2017, 3 (4) : 1675 - 1689
  • [36] Application of Data-Driven Modelling to Flood Forecasting with a Case Study for the Huai River in China
    Solomatine, Dimitti P.
    Xue Yunpeng
    Zhu Chuanbao
    Yan, Li
    PROCEEDINGS OF THE 1ST INTERNATIONAL YELLOW RIVER FORUM ON RIVER BASIN MANAGEMENT, VOL III, 2003, : 140 - 150
  • [37] Cooperative data-driven modeling
    Dekhovich, Aleksandr
    Turan, O. Taylan
    Yi, Jiaxiang
    Bessa, Miguel A.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 417
  • [38] A Comparative Study of Data-driven Models for Groundwater Level Forecasting
    R. Sarma
    S. K. Singh
    Water Resources Management, 2022, 36 : 2741 - 2756
  • [39] A Comparative Study of Data-driven Models for Groundwater Level Forecasting
    Sarma, R.
    Singh, S. K.
    WATER RESOURCES MANAGEMENT, 2022, 36 (08) : 2741 - 2756
  • [40] Data-driven budget reductions: a case study
    Novak, Denise D.
    Paulos, Afeworki
    Clair, Gloriana St.
    BOTTOM LINE, 2011, 24 (01): : 24 - 34