Fault Forecasting Using Data-Driven Modeling: A Case Study for Metro do Porto Data Set

被引:1
|
作者
Davari, Narjes [1 ]
Veloso, Bruno [1 ,2 ,4 ]
Ribeiro, Rita P. [1 ,3 ]
Gama, Joao [1 ,4 ]
机构
[1] INESC TEC, P-4200465 Porto, Portugal
[2] Univ Portucalense, P-4200072 Porto, Portugal
[3] Univ Porto, Fac Sci, P-4169007 Porto, Portugal
[4] Univ Porto, Fac Econ, P-4200464 Porto, Portugal
关键词
Anomaly detection; Fault forecasting; System identification; Predictive maintenance; IDENTIFICATION;
D O I
10.1007/978-3-031-23633-4_26
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The demand for high-performance solutions for anomaly detection and forecasting fault events is increasing in the industrial area. The detection and forecasting faults from time-series data are one critical mission in the Internet of Things (IoT) data mining. The classical fault detection approaches based on physical modelling are limited to some measurable output variables. Accurate physical modelling of vehicle dynamics requires substantial prior information about the system. On the other hand, data-driven modelling techniques accurately represent the system's dynamic from data collection. Experimental results on large-scale data sets from Metro do Porto subsystems verify that our method performs high-quality fault detection and forecasting solutions. Also, health indicator obtained from the principal component analysis of the forecasting solution is applied to predict the remaining useful life.
引用
收藏
页码:400 / 409
页数:10
相关论文
共 50 条
  • [1] Forecasting fault events for predictive maintenance using data-driven techniques and ARMA modeling
    Baptista, Marcia
    Sankararaman, Shankar
    de Medeiros, Ivo. P.
    Nascimento, Cairo, Jr.
    Prendinger, Helmut
    Henriques, Elsa M. P.
    COMPUTERS & INDUSTRIAL ENGINEERING, 2018, 115 : 41 - 53
  • [2] WeatherBench: A Benchmark Data Set for Data-Driven Weather Forecasting
    Rasp, Stephan
    Dueben, Peter D.
    Scher, Sebastian
    Weyn, Jonathan A.
    Mouatadid, Soukayna
    Thuerey, Nils
    JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2020, 12 (11)
  • [3] Data-driven runoff forecasting for Minjiang River: a case study
    Wu, Yuqiang
    Wang, Qinhui
    Li, Ge
    Li, Jidong
    WATER SUPPLY, 2020, 20 (06) : 2284 - 2295
  • [4] Forecasting critical transitions using data-driven nonstationary dynamical modeling
    Kwasniok, Frank
    PHYSICAL REVIEW E, 2015, 92 (06)
  • [5] Data-Driven Open-Set Fault Classification of Residual Data Using Bayesian Filtering
    Jung, Daniel
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2020, 28 (05) : 2045 - 2052
  • [6] A Case Study of Data-driven Interpretable Fuzzy Modeling
    XING ZongYi JIA LiMin ZHANG Yong HU WeiLi QIN Yong Automation DepartmentNanjin University of Science and TechnologyNanjing School of Traffic and TransportationBeijing Jiaotong UniversityBeijing
    自动化学报, 2005, (06) : 3 - 12
  • [7] Data-Driven Load Modeling and Forecasting of Residential Appliances
    Ji, Yuting
    Buechler, Elizabeth
    Rajagopal, Ram
    IEEE TRANSACTIONS ON SMART GRID, 2020, 11 (03) : 2652 - 2661
  • [8] Data-Driven Load Modeling and Forecasting of Residential Appliances
    Ji, Yuting
    Buechler, Elizabeth
    Rajagopal, Ram
    2021 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2021,
  • [9] Industrial data-driven modeling for imbalanced fault diagnosis
    Lin, Kuo-Yi
    Jamrus, Thitipong
    INDUSTRIAL MANAGEMENT & DATA SYSTEMS, 2024, 124 (11) : 3108 - 3137
  • [10] Data-Driven Modeling: Concept, Techniques, Challenges and a Case Study
    Habib, Maki K.
    Ayankoso, Samuel A.
    Nagata, Fusaomi
    2021 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (IEEE ICMA 2021), 2021, : 1000 - 1007