Perspective of Waste to Energy and Fuel with Negative Emission Potential: Smart Environmental and Techno-economic Analysis

被引:2
|
作者
Li, Lanyu [1 ,3 ]
Li, Jie [2 ]
Li, Yuchen [1 ]
Luo, Jing [1 ]
Wang, Yin [2 ]
Wang, Xiaonan [1 ,4 ]
机构
[1] Tsinghua Univ, Dept Chem Engn, Beijing 100084, Peoples R China
[2] Chinese Acad Sci, Inst Urban Environm, CAS Key Lab Urban Pollutant Convers, Xiamen 361021, Fujian, Peoples R China
[3] Tsinghua Univ, Sch Econ & Management, Beijing 100084, Peoples R China
[4] Tsinghua Univ, Key Lab Ind Biocatalysis, Minist Educ, Beijing 100084, Peoples R China
基金
国家重点研发计划;
关键词
waste to energy; sustainability; techno-economicanalysis; life cycle assessment; computational modeling; artificial intelligence; LIFE-CYCLE ASSESSMENT; SUPERCRITICAL WATER GASIFICATION; MUNICIPAL SOLID-WASTE; FOOD WASTE; SEWAGE-SLUDGE; ANAEROBIC-DIGESTION; HYDROTHERMAL CARBONIZATION; CO-DIGESTION; FULL-SCALE; HYDROGEN-PRODUCTION;
D O I
10.1021/acs.energyfuels.3c02109
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Waste to energy and fuel is an emerging area to deal with waste treatment and realize the circular economy. The issues regarding the disposal of wet waste, especially food waste, are of continuous concern worldwide. The growth of wet waste, which is a manifestation of increased human production and consumption, may imply a high carbon input to the atmosphere. However, it can be converted into bioenergy and biochar, which means a latent economic performance and negative emission potential. Studies on wet-waste conversion technologies have been frequently seen in recent years, whereas few studies have been conducted to summarize, compare, and discuss them. In this review, we evaluate several typical wet-waste conversion technologies (including but not limited to anaerobic digestion, hydrothermal carbonization, incineration, gasification, and pyrolysis) through a literature survey and highlight their carbon emissions and negative emission potential for different categories of wet waste. The review shows that, for the treatment of wet waste, including sewage sludge, food waste, and animal manure, all of the discussed wet-waste conversion technologies were found to be more environmentally favorable than traditional landfilling or composting methods. Anaerobic digestion stands out in terms of both sustainability and commercial maturity. Alongside the assessment of carbon footprints across various wet-waste categories, the technological development and economic performance of the waste-to-energy technologies and the application of artificial intelligence in the field have also been reviewed, aiming to present an objective and comprehensive overview of the advantages and disadvantages of these technologies and to ascribe possible projections of future developments in this domain.
引用
收藏
页码:14556 / 14573
页数:18
相关论文
共 50 条
  • [41] Techno-economic and environmental analysis of an Aquifer Thermal Energy Storage (ATES) in Germany
    Simon Schüppler
    Paul Fleuchaus
    Philipp Blum
    Geothermal Energy, 7
  • [42] Review of Researches on Techno-Economic Analysis and Environmental Impact of Hybrid Energy Systems
    Akorede, M. F.
    Oladeji, A. S.
    Ariyo, B. O.
    Omeiza, I. O. A.
    Marzband, M.
    JORDAN JOURNAL OF ELECTRICAL ENGINEERING, 2020, 6 (02): : 78 - 108
  • [43] A techno-economic analysis of tidal energy technology
    Johnstone, C. M.
    Pratt, D.
    Clarke, J. A.
    Grant, A. D.
    RENEWABLE ENERGY, 2013, 49 : 101 - 106
  • [44] Techno-economic and environmental analysis of hybrid energy system for industrial sector of Pakistan
    Mumtaz, Mugheera Ali
    Rehman, Atiq Ur
    Ayub, Muhammad
    Muhammad, Fazal
    Raza, Muhammad Waleed
    Iqbal, Sheeraz
    Elbarbary, Z. M. S.
    Alsenani, Theyab R.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [45] Techno-economic and environmental analysis of an Aquifer Thermal Energy Storage (ATES) in Germany
    Schueppler, Simon
    Fleuchaus, Paul
    Blum, Philipp
    GEOTHERMAL ENERGY, 2019, 7 (01)
  • [46] Techno-economic analysis of household and community energy storage for residential prosumers with smart appliances
    van der Stelt, Sander
    AiSkaif, Tarek
    van Sark, Wilfried
    APPLIED ENERGY, 2018, 209 : 266 - 276
  • [47] Techno-economic and environmental assessment of energy vectors in decarbonization of energy islands
    Herencic, Lin
    Melnjak, Matija
    Capuder, Tomislav
    Androcec, Ivan
    Rajsl, Ivan
    ENERGY CONVERSION AND MANAGEMENT, 2021, 236
  • [48] Techno-economic and environmental analysis of a photovoltaic system in Istanbul
    Sulukan, Egemen
    PAMUKKALE UNIVERSITY JOURNAL OF ENGINEERING SCIENCES-PAMUKKALE UNIVERSITESI MUHENDISLIK BILIMLERI DERGISI, 2020, 26 (01): : 127 - 132
  • [49] Techno-Economic Analysis and Environmental Impact of Electric Buses
    Yusof, Nurizyan Khairiah
    Abas, Pg Emeroylariffion
    Mahlia, T. M., I
    Hannan, M. A.
    WORLD ELECTRIC VEHICLE JOURNAL, 2021, 12 (01):
  • [50] Techno-economic, health and environmental aspects of asbestos waste management in Poland
    Pyssa, Justyna
    PRZEMYSL CHEMICZNY, 2019, 98 (03): : 461 - 467