Techno-economic and environmental assessment of energy vectors in decarbonization of energy islands

被引:29
|
作者
Herencic, Lin [1 ]
Melnjak, Matija [2 ]
Capuder, Tomislav [1 ]
Androcec, Ivan [3 ]
Rajsl, Ivan [1 ]
机构
[1] Univ Zagreb, Fac Elect Engn & Comp, Zagreb, Croatia
[2] Petrol Doo, Zagreb, Croatia
[3] Croatian Elect Util HEP Dd, Zagreb, Croatia
关键词
Renewable energy; Energy communities; Energy islands; Energy vectors; Decarbonization; SUSTAINABLE ENERGY; GENERATION SYSTEM; RENEWABLE ENERGY; POWER; OPTIMIZATION; HYDROGEN; STORAGE; DESIGN; CLASSIFICATION; CONFIGURATION;
D O I
10.1016/j.enconman.2021.114064
中图分类号
O414.1 [热力学];
学科分类号
摘要
Decarbonization and transformation of the power system go beyond integrating large shares of variable distributed energy sources; it implies understanding the increasing flexibility needs of the power system and breaking barriers in the process of transforming passive users to active participants in future low carbon energy systems. Unlocking the potential of final users and transforming them into distributed flexibility providers requires harmonization of operation through new models such as the association in energy communities. Multivector energy communities (MEC) can provide further flexibility options, enable integration of local energy generation and empower energy islands to increase self-sufficiency and resilience to external impacts. In line with this, the paper develops a unified mixed-integer linear programming (MILP) model of a MEC and rigorously assesses techno-economic performances of different combinations of energy sources, vectors and consumers. That way, the potential of different MECs for providing flexibility and increasing the utilization of electricity production from local renewable energy sources is assessed. Based on the results of the MILP models, the paper further proposes novel indicators for estimation of the techno-economic and environmental potential of different multi-energy vectors in decarbonization of energy islands. Case study analysis comprises of eight scenarios with different MEC?s setups with realistic data from island ?r? in Denmark and island Vis in Croatia, capturing also geographical specificities. The results show significant differences across different MEC set-ups as well as between the geographical locations, and some of the results that can be highlighted are: demand responsive electric heat pumps and use of battery energy storage systems provide stand-out energy potency and can ensure selfsufficiency with smallest capacity of electricity production from local renewable energy sources, but comes with a growing costs for the increase of storage capacity; use of imported natural gas as a transition fuel could be affordable solution but does not lead to fulfilment of self-sufficiency or environmental goals; hydrogen energy vector has significant potential, especially in cases where seasonal energy storage is needed but the costs are still a main barrier; correlation of production and consumption patterns in island ?r? in Denmark favor wind energy, while the increased capacity and production from solar plants is more favorable in island Vis in Croatia.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Techno-economic assessment of hybrid energy flexibility systems for islands' decarbonization: A case study in Italy
    Hoseinzadeh, Siamak
    Garcia, Davide Astiaso
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2022, 51
  • [2] Environmental, Energy, and Techno-Economic Assessment of Waste-to-Energy Incineration
    Zeng, Jincan
    Mustafa, Ade Brian
    Liu, Minwei
    Huang, Guori
    Shang, Nan
    Liu, Xi
    Wei, Kexin
    Wang, Peng
    Dong, Huijuan
    SUSTAINABILITY, 2024, 16 (10)
  • [3] Techno-economic assessment of energy and environmental impact of waste-to-energy electricity generation
    Asim, Muhammad
    Kumar, Rohan
    Kanwal, Ammara
    Shahzad, Amir
    Ahmad, Ashfaq
    Farooq, Muhammad
    ENERGY REPORTS, 2023, 9 : 1087 - 1097
  • [4] Techno-economic assessment of energy and environmental impact of waste-to-energy electricity generation
    Asim, Muhammad
    Kumar, Rohan
    Kanwal, Ammara
    Shahzad, Amir
    Ahmad, Ashfaq
    Farooq, Muhammad
    ENERGY REPORTS, 2023, 9 : 1087 - 1097
  • [5] Techno-economic assessment of energy and environmental impact of waste-to-energy electricity generation
    Asim M.
    Kumar R.
    Kanwal A.
    Shahzad A.
    Ahmad A.
    Farooq M.
    Energy Reports, 2023, 9 : 1087 - 1097
  • [6] Conversion of food waste to renewable energy: A techno-economic and environmental assessment
    Chen, Yunzhi
    Pinegar, Lizzie
    Immonen, Jake
    Powell, Kody M.
    JOURNAL OF CLEANER PRODUCTION, 2023, 385
  • [7] A techno-economic assessment of offshore wind energy in Chile
    Mattar, Cristian
    Cristina Guzman-Ibarra, Maria
    ENERGY, 2017, 133 : 191 - 205
  • [8] A techno-economic assessment of wave energy resources in the Philippines
    Quitoras, Marvin Rhey D.
    Abundo, Michael Lochinvar S.
    Danao, Louis Angelo M.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 88 : 68 - 81
  • [9] Techno-Economic Assessment for Optimal Energy Storage Mix
    Spataru, Catalina
    Kok, Yen Chung
    Barrett, Mark
    Sweetnam, Trevor
    SUSTAINABILITY IN ENERGY AND BUILDINGS: PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE SEB-15, 2015, 83 : 515 - 524
  • [10] Techno-Economic Assessment of Offshore Wind Energy in the Philippines
    Maandal, Gerard Lorenz D.
    Tamayao-Kieke, Mili-Ann M.
    Danao, Louis Angelo M.
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2021, 9 (07)