Summability of Fourier transforms on mixed-norm Lebesgue spaces via associated Herz spaces

被引:33
|
作者
Huang, Long [1 ]
Weisz, Ferenc [2 ]
Yang, Dachun [1 ]
Yuan, Wen [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ China, Beijing 100875, Peoples R China
[2] Eotvos L Univ, Dept Numer Anal, Pazmany P Setany 1-C, H-1117 Budapest, Hungary
基金
中国国家自然科学基金;
关键词
Fourier transform; theta-mean; mixed centered (strong) Hardy-Littlewood maximal operator; Lebesgue point; mixed-norm Lebesgue space; mixed-norm homogeneous Herz space; LIZORKIN-TRIEBEL SPACES; BILINEAR OPERATORS; CONVERGENCE; POINTS; BESOV; LP;
D O I
10.1142/S0219530521500135
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (p) over bar := (p1,..., p(n)), (r) over bar := (r1,..., r(n)). [1,8)(n), L-(r) over bar(R-n) be the mixed-norm Lebesgue space, and theta an integrable function. In this paper, via establishing the boundedness of the mixed centered Hardy-Littlewood maximal operator M-(p) over bar from L-(r) over bar(R-n) to itself or to the weak mixed-norm Lebesgue space WL(r) over bar(R-n) under some sharp assumptions on (p) over bar and (r) over bar, the authors show that the theta-mean of f is an element of L-(r) over bar(R-n) converges to f almost everywhere over the diagonal if the Fourier transform (sic) of theta belongs to some mixed-norm homogeneous Herz space. E-(p) over bar(R-n) with (p) over bar being the conjugate index of (p) over bar. Furthermore, by introducing another mixed-norm homogeneous Herz space and establishing a characterization of this Herz space, the authors then extend the above almost everywhere convergence of theta-means to the unrestricted case. Finally, the authors show that the theta-mean of f is an element of L-(r) over bar(R-n) converges over the diagonal to f at all its (p) over bar -Lebesgue points if and only if (sic) belongs to E-(p) over bar(R-n), and a similar conclusion also holds true for the unrestricted convergence at strong (p) over bar -Lebesgue points. Observe that, in all these results, those Herz spaces to which (sic) belongs prove to be the best choice in some sense.
引用
收藏
页码:279 / 328
页数:50
相关论文
共 50 条
  • [31] Interpolations of Mixed-Norm Function Spaces
    Suqing Wu
    Dachun Yang
    Wen Yuan
    Bulletin of the Malaysian Mathematical Sciences Society, 2022, 45 : 153 - 175
  • [32] Mixed-Norm Amalgam Spaces and Their Predual
    Zhang, Houkun
    Zhou, Jiang
    SYMMETRY-BASEL, 2022, 14 (01):
  • [33] Anisotropic Mixed-Norm Hardy Spaces
    G. Cleanthous
    A. G. Georgiadis
    M. Nielsen
    The Journal of Geometric Analysis, 2017, 27 : 2758 - 2787
  • [34] Radial multipliers and restriction to surfaces of the Fourier transform in mixed-norm spaces
    Antonio Córdoba
    Eric Latorre Crespo
    Mathematische Zeitschrift, 2017, 286 : 1479 - 1493
  • [35] Anisotropic Mixed-Norm Hardy Spaces
    Cleanthous, G.
    Georgiadis, A. G.
    Nielsen, M.
    JOURNAL OF GEOMETRIC ANALYSIS, 2017, 27 (04) : 2758 - 2787
  • [36] Local Hardy spaces and summability of Fourier transforms
    Weisz, Ferenc
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 362 (02) : 275 - 285
  • [37] Mixed Norm Inequalities for Lebesgue Spaces
    Pankaj Jain
    Santosh Kumari
    Monika Singh
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2020, 90 : 783 - 787
  • [38] On Lebesgue Integrability of Fourier Transforms in Amalgam Spaces
    Sekou Coulibaly
    Ibrahim Fofana
    Journal of Fourier Analysis and Applications, 2019, 25 : 184 - 209
  • [39] On Lebesgue Integrability of Fourier Transforms in Amalgam Spaces
    Coulibaly, Sekou
    Fofana, Ibrahim
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2019, 25 (01) : 184 - 209
  • [40] Mixed Norm Inequalities for Lebesgue Spaces
    Jain, Pankaj
    Kumari, Santosh
    Singh, Monika
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2020, 90 (05) : 783 - 787