Summability of Fourier transforms on mixed-norm Lebesgue spaces via associated Herz spaces

被引:33
|
作者
Huang, Long [1 ]
Weisz, Ferenc [2 ]
Yang, Dachun [1 ]
Yuan, Wen [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ China, Beijing 100875, Peoples R China
[2] Eotvos L Univ, Dept Numer Anal, Pazmany P Setany 1-C, H-1117 Budapest, Hungary
基金
中国国家自然科学基金;
关键词
Fourier transform; theta-mean; mixed centered (strong) Hardy-Littlewood maximal operator; Lebesgue point; mixed-norm Lebesgue space; mixed-norm homogeneous Herz space; LIZORKIN-TRIEBEL SPACES; BILINEAR OPERATORS; CONVERGENCE; POINTS; BESOV; LP;
D O I
10.1142/S0219530521500135
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (p) over bar := (p1,..., p(n)), (r) over bar := (r1,..., r(n)). [1,8)(n), L-(r) over bar(R-n) be the mixed-norm Lebesgue space, and theta an integrable function. In this paper, via establishing the boundedness of the mixed centered Hardy-Littlewood maximal operator M-(p) over bar from L-(r) over bar(R-n) to itself or to the weak mixed-norm Lebesgue space WL(r) over bar(R-n) under some sharp assumptions on (p) over bar and (r) over bar, the authors show that the theta-mean of f is an element of L-(r) over bar(R-n) converges to f almost everywhere over the diagonal if the Fourier transform (sic) of theta belongs to some mixed-norm homogeneous Herz space. E-(p) over bar(R-n) with (p) over bar being the conjugate index of (p) over bar. Furthermore, by introducing another mixed-norm homogeneous Herz space and establishing a characterization of this Herz space, the authors then extend the above almost everywhere convergence of theta-means to the unrestricted case. Finally, the authors show that the theta-mean of f is an element of L-(r) over bar(R-n) converges over the diagonal to f at all its (p) over bar -Lebesgue points if and only if (sic) belongs to E-(p) over bar(R-n), and a similar conclusion also holds true for the unrestricted convergence at strong (p) over bar -Lebesgue points. Observe that, in all these results, those Herz spaces to which (sic) belongs prove to be the best choice in some sense.
引用
收藏
页码:279 / 328
页数:50
相关论文
共 50 条
  • [21] MIXED-NORM SPACES AND INTERPOLATION
    ORTEGA, JM
    FABREGA, J
    STUDIA MATHEMATICA, 1994, 109 (03) : 233 - 254
  • [22] Operators on Mixed-Norm Amalgam Spaces via Extrapolation
    Lu, Y.
    Zhou, J.
    Wang, S.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2023, 58 (04): : 226 - 242
  • [23] Operators on Mixed-Norm Amalgam Spaces via Extrapolation
    Y. Lu
    J. Zhou#
    S. Wang
    Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 2023, 58 : 226 - 242
  • [24] Wavelet transforms for homogeneous mixed-norm Triebel-Lizorkin spaces
    Georgiadis, A. G.
    Johnsen, J.
    Nielsen, M.
    MONATSHEFTE FUR MATHEMATIK, 2017, 183 (04): : 587 - 624
  • [26] Grothendieck-Lidskii trace formula for mixed-norm and variable Lebesgue spaces
    Delgado, Julio
    Ruzhansky, Michael
    Wang, Baoxiang
    JOURNAL OF SPECTRAL THEORY, 2016, 6 (04) : 781 - 791
  • [27] DUAL SPACES OF MIXED-NORM MARTINGALE HARDY SPACES
    Weisz, Ferenc
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (02) : 681 - 695
  • [28] DUAL SPACES OF ANISOTROPIC MIXED-NORM HARDY SPACES
    Huang, Long
    Liu, Jun
    Yang, Dachun
    Yuan, Wen
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (03) : 1201 - 1215
  • [29] Interpolations of Mixed-Norm Function Spaces
    Wu, Suqing
    Yang, Dachun
    Yuan, Wen
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (01) : 153 - 175
  • [30] Radial multipliers and restriction to surfaces of the Fourier transform in mixed-norm spaces
    Cordoba, Antonio
    Latorre Crespo, Eric
    MATHEMATISCHE ZEITSCHRIFT, 2017, 286 (3-4) : 1479 - 1493