Multi-objective particle swarm optimization of industrial natural gas dehydration process

被引:5
|
作者
Al-Jammali, Ali Sameer Ismail [1 ]
Amooey, Ali Akbar [1 ]
Nabavi, Seyed Reza [2 ]
机构
[1] Univ Mazandaran, Fac Technol & Engn, Dept Chem Engn, Babolsar, Iran
[2] Univ Mazandaran, Fac Chem, Dept Appl Chem, Babolsar, Iran
关键词
Natural gas; Dehydration process; Tri-ethylene glycol; Multi-objective particle swarm optimization; Aspen Hysys; GLYCOL DEHYDRATION; SIMULATION; ENERGY;
D O I
10.1007/s11696-022-02518-0
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Dehydration by TEG is widely used in the NGD process to prevent corrosion and plugging of the equipment, valves, and flow lines. In this process, TEG is usually lost in the system due to vaporization and carryover. Therefore, it is necessary to optimize the dehydration process to achieve the allowable water content in the dry gas, and also to minimize heat duty, and TEG losses simultaneously. Therefore, the problem has multi-objective for optimization. The process is simulated by using Aspen Hysys, and the thermodynamic model was glycol-package. Validation of the simulation results was done by comparing with the plant data. Several bi- and tri-objective optimization problems are solved; these problems involved minimization of water content, heat duty, TEG loss and maximization of dry gas flow rate. Wet gas temperature, flow rate, pressure, TEG temperature and mass flow rate, and rich glycol temperature were decision variables. MOPSO algorithm was used for obtaining the Pareto fronts. MOO of the NDG provides a range of optimal operating conditions and objective values; a suitable operating point can be selected based on the higher knowledge like profit.
引用
收藏
页码:1067 / 1080
页数:14
相关论文
共 50 条
  • [21] Multi-objective particle swarm optimization approach to portfolio optimization
    Mishra, Sudhansu Kumar
    Panda, Ganapati
    Meher, Sukadev
    2009 WORLD CONGRESS ON NATURE & BIOLOGICALLY INSPIRED COMPUTING (NABIC 2009), 2009, : 1611 - 1614
  • [22] DMOPSO: Dual Multi-Objective Particle Swarm Optimization
    Lee, Ki-Baek
    Kim, Jong-Hwan
    2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2014, : 3096 - 3102
  • [23] Multi-Objective Particle Swarm Optimization on Computer Grids
    Mostaghim, Sanaz
    Branke, Juergen
    Schmeck, Hartmut
    GECCO 2007: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOL 1 AND 2, 2007, : 869 - 875
  • [24] Entropy Diversity in Multi-Objective Particle Swarm Optimization
    Solteiro Pires, Eduardo J.
    Tenreiro Machado, Jose A.
    de Moura Oliveira, Paulo B.
    ENTROPY, 2013, 15 (12) : 5475 - 5491
  • [25] A simplified multi-objective particle swarm optimization algorithm
    Vibhu Trivedi
    Pushkar Varshney
    Manojkumar Ramteke
    Swarm Intelligence, 2020, 14 : 83 - 116
  • [26] Multi-objective particle swarm optimization for ontology alignment
    Semenova, A., V
    Kureychik, V. M.
    2016 IEEE 10TH INTERNATIONAL CONFERENCE ON APPLICATION OF INFORMATION AND COMMUNICATION TECHNOLOGIES (AICT), 2016, : 141 - 147
  • [27] Fitness inheritance in Multi-Objective Particle Swarm Optimization
    Reyes-Sierra, M
    Coello Coello, CA
    2005 IEEE SWARM INTELLIGENCE SYMPOSIUM, 2005, : 116 - 123
  • [28] An improved multi-objective particle swarm optimization algorithm
    Zhang, Qiuming
    Xue, Siqing
    ADVANCES IN COMPUTATION AND INTELLIGENCE, PROCEEDINGS, 2007, 4683 : 372 - +
  • [29] Molecular docking with multi-objective particle swarm optimization
    Janson, Stefan
    Merkle, Daniel
    Middendorf, Martin
    APPLIED SOFT COMPUTING, 2008, 8 (01) : 666 - 675
  • [30] A particle swarm optimization for multi-objective flowshop scheduling
    D. Y. Sha
    Hsing Hung Lin
    The International Journal of Advanced Manufacturing Technology, 2009, 45 (7-8) : 749 - 758