DMOPSO: Dual Multi-Objective Particle Swarm Optimization

被引:0
|
作者
Lee, Ki-Baek [1 ]
Kim, Jong-Hwan [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Elect Engn, Daejeon 305701, South Korea
关键词
Multi-objective Evolutionary Algorithm; Multi-objective Particle Swarm Optimization; Dual-stage dominance check; Crowding distance; User preference; ALGORITHM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Since multi-objective optimization algorithms (MOEAs) have to find exponentially increasing number of nondominated solutions with the increasing number of objectives, it is necessary to discriminate more meaningful ones from the other nondominated solutions by additionally incorporating user preference into the algorithms. This paper proposes dual multi-objective particle swarm optimization (DMOSPO) by introducing secondary objectives of maximizing both user preference and diversity to the nondominated solutions obtained for primary objectives. The proposed DMOSPO can induce the balanced exploration of the particles in terms of user preference and diversity through the dual-stage of nondominated sorting such that it can generate preferable and diverse nondominated solutions. To demonstrate the effectiveness of the proposed DMOPSO, empirical comparisons with other state-of-the-art algorithms are carried out for benchmark functions. Experimental results show that DMOPSO is competitive with the other compared algorithms and properly reflects the user's preference in the optimization process while maintaining the diversity and solution quality.
引用
收藏
页码:3096 / 3102
页数:7
相关论文
共 50 条
  • [1] Integrated optimization by multi-objective particle swarm optimization
    Tokyo Metropolitan University, 1-1, Minamiosawa, Hachioji-shi, Tokyo 192-0397, Japan
    IEEJ Trans. Electr. Electron. Eng., 1931, 1 (79-81):
  • [2] Integrated Optimization by Multi-Objective Particle Swarm Optimization
    Kawarabayashi, Masaru
    Tsuchiya, Junichi
    Yasuda, Keiichiro
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2010, 5 (01) : 79 - 81
  • [3] An Improved Multi-objective Particle Swarm Optimization
    Xu, Shengbing
    Ouyang, Zhiping
    Feng, Jiqiang
    2020 5TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND APPLICATIONS (ICCIA 2020), 2020, : 19 - 23
  • [4] A Particle Swarm Optimizer for Multi-Objective Optimization
    Cagnina, Leticia
    Esquivel, Susana
    Coello Coello, Carlos A.
    JOURNAL OF COMPUTER SCIENCE & TECHNOLOGY, 2005, 5 (04): : 204 - 210
  • [5] An Improving Multi-Objective Particle Swarm Optimization
    Fan, JiShan
    WEB INFORMATION SYSTEMS AND MINING, 2010, 6318 : 1 - 6
  • [6] An Improved Multi-Objective Particle Swarm Optimization
    Yang, Xixiang
    Zhang, Weihua
    ADVANCED SCIENCE LETTERS, 2011, 4 (4-5) : 1491 - 1495
  • [7] Modified Multi-Objective Particle Swarm Optimization Algorithm for Multi-objective Optimization Problems
    Qiao, Ying
    ADVANCES IN SWARM INTELLIGENCE, ICSI 2012, PT I, 2012, 7331 : 520 - 527
  • [8] Dynamic Multi-Swarm Particle Swarm Optimization for Multi-Objective Optimization Problems
    Liang, J. J.
    Qu, B. Y.
    Suganthan, P. N.
    Niu, B.
    2012 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2012,
  • [9] Multi-Objective Particle Swarm Optimization based on particle density
    Hasegawa T.
    Ishigame A.
    Yasuda K.
    IEEJ Transactions on Electronics, Information and Systems, 2010, 130 (07) : 1207 - 1212+16
  • [10] Robust optimization using multi-objective particle swarm optimization
    Ono S.
    Yoshitake Y.
    Nakayama S.
    Artificial Life and Robotics, 2009, 14 (02) : 174 - 177