Inverse problem for a time-fractional differential equation with a time- and space-integral conditions

被引:2
|
作者
Kirane, Mokhtar [1 ,2 ,3 ]
Lopushansky, Andriy [4 ,6 ]
Lopushanska, Halyna [5 ]
机构
[1] Khalifa Univ, Fac Arts & Sci, Dept Math, Abu Dhabi, U Arab Emirates
[2] King Abdulaziz Univ, Fac Sci, Dept Math, NAAM Res Grp, Jeddah, Saudi Arabia
[3] Univ La Rochelle, LASIE, La Rochelle, France
[4] Univ Rzeszow, Inst Informat, Rzeszow, Poland
[5] Ivan Franko Natl Univ Lviv, Dept Differential Equat, Lvov, Ukraine
[6] Univ Rzeszow, Inst Informat, 1 Pigon Str, PL-35310 Rzeszow, Poland
关键词
fractional derivative; Green vector-function; integral condition; inverse problem; Schwartz distribution; DIFFUSION EQUATION;
D O I
10.1002/mma.9453
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the inverse problem for a differential equation of order 2b$$ 2b $$ with the time Caputo fractional derivative and a source with values in Schwartz-type distributions. The generalized solution of the Cauchy problem for such an equation with initial values and a time-dependent reaction coefficient are unknown. We find sufficient conditions for the unique solvability of the inverse problem under a time- and space-integral overdetermination conditions.
引用
收藏
页码:16381 / 16393
页数:13
相关论文
共 50 条