Inverse problem for a time-fractional differential equation with a time- and space-integral conditions

被引:2
|
作者
Kirane, Mokhtar [1 ,2 ,3 ]
Lopushansky, Andriy [4 ,6 ]
Lopushanska, Halyna [5 ]
机构
[1] Khalifa Univ, Fac Arts & Sci, Dept Math, Abu Dhabi, U Arab Emirates
[2] King Abdulaziz Univ, Fac Sci, Dept Math, NAAM Res Grp, Jeddah, Saudi Arabia
[3] Univ La Rochelle, LASIE, La Rochelle, France
[4] Univ Rzeszow, Inst Informat, Rzeszow, Poland
[5] Ivan Franko Natl Univ Lviv, Dept Differential Equat, Lvov, Ukraine
[6] Univ Rzeszow, Inst Informat, 1 Pigon Str, PL-35310 Rzeszow, Poland
关键词
fractional derivative; Green vector-function; integral condition; inverse problem; Schwartz distribution; DIFFUSION EQUATION;
D O I
10.1002/mma.9453
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the inverse problem for a differential equation of order 2b$$ 2b $$ with the time Caputo fractional derivative and a source with values in Schwartz-type distributions. The generalized solution of the Cauchy problem for such an equation with initial values and a time-dependent reaction coefficient are unknown. We find sufficient conditions for the unique solvability of the inverse problem under a time- and space-integral overdetermination conditions.
引用
收藏
页码:16381 / 16393
页数:13
相关论文
共 50 条
  • [21] An Inverse Source Problem with Sparsity Constraint for the Time-Fractional Diffusion Equation
    Ruan, Zhousheng
    Yang, Zhijian
    Lu, Xiliang
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2016, 8 (01) : 1 - 18
  • [22] An iterative method for an inverse source problem of time-fractional diffusion equation
    Wang, Jun-Gang
    Ran, Yu-Hong
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2018, 26 (10) : 1509 - 1521
  • [23] An inverse problem of identifying the coefficient in a nonlinear time-fractional diffusion equation
    Oulmelk, A.
    Afraites, L.
    Hadri, A.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (01):
  • [24] Inverse Coefficient Problem for a Time-Fractional Diffusion Equation in the Bounded Domain
    Durdiev, D. K.
    Jumaev, J. J.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (02) : 548 - 557
  • [25] Inverse Problem for the Time-Fractional Euler-Bernoulli Beam Equation
    Tekin, Ibrahim
    Yang, He
    MATHEMATICAL MODELLING AND ANALYSIS, 2021, 26 (03) : 503 - 518
  • [26] An inverse source problem for distributed order time-fractional diffusion equation
    Sun, Chunlong
    Liu, Jijun
    INVERSE PROBLEMS, 2020, 36 (05)
  • [27] Inverse Coefficient Problem for a Time-Fractional Diffusion Equation in the Bounded Domain
    D. K. Durdiev
    J. J. Jumaev
    Lobachevskii Journal of Mathematics, 2023, 44 : 548 - 557
  • [28] An Inverse Source Problem For a Two Terms Time-fractional Diffusion Equation
    Dib, Fatima
    Kirane, Mokhtar
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2022, 40
  • [29] An inverse coefficient-source problem for a time-fractional diffusion equation
    Settara, Loubna
    Atmania, Rahima
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2018, 57 (03): : 68 - 78
  • [30] An inverse problem of identifying the coefficient in a nonlinear time-fractional diffusion equation
    A. Oulmelk
    L. Afraites
    A. Hadri
    Computational and Applied Mathematics, 2023, 42