An atomistic pathway for a strain-induced subsolidus martensitic transition between quartz and coesite was found by computing the set of the smallest atomic displacements required to transform a quartz structure into a coesite structure. A minimal transformation cell with 24 SiO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hbox {SiO}_{2}}$$\end{document} formula units is sufficient to describe the diffusionless martensitic transition from quartz to coesite. We identified two families of invariant shear planes during the martensitic transition, near the {101 over bar \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{1}}$$\end{document}1} and {123 over bar \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{3}}$$\end{document}2} set of planes, in agreement with the orientation of planar defect structures observed in quartz samples which experienced hypervelocity impacts. We calculated the reaction barrier using density functional theory and found that the barrier of 150 meV/atom is pressure invariant from ambient pressure up to 5 GPa, while the mean principal stress limiting the stability of strained quartz is approximate to\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\approx$$\end{document} 2 GPa. The model calculations quantitatively confirm that coesite can be formed in strained quartz at pressures significantly below the hydrostatic equilibrium transition pressure.
机构:
China Univ Geosci, Fac Mat Sci & Chem, Wuhan 430074, Hubei, Peoples R China
Wuchang Shouyi Univ, Dept Phys, Wuhan 430064, Hubei, Peoples R ChinaChina Univ Geosci, Fac Mat Sci & Chem, Wuhan 430074, Hubei, Peoples R China
Liu, Weiping
Chen, Long
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Geosci, Fac Mat Sci & Chem, Wuhan 430074, Hubei, Peoples R ChinaChina Univ Geosci, Fac Mat Sci & Chem, Wuhan 430074, Hubei, Peoples R China
Chen, Long
Wang, Anqi
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Geosci, Fac Mat Sci & Chem, Wuhan 430074, Hubei, Peoples R ChinaChina Univ Geosci, Fac Mat Sci & Chem, Wuhan 430074, Hubei, Peoples R China
Wang, Anqi
Meng, Dawei
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Geosci, Fac Mat Sci & Chem, Wuhan 430074, Hubei, Peoples R ChinaChina Univ Geosci, Fac Mat Sci & Chem, Wuhan 430074, Hubei, Peoples R China
Meng, Dawei
Wu, Xiuling
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Geosci, Fac Mat Sci & Chem, Wuhan 430074, Hubei, Peoples R ChinaChina Univ Geosci, Fac Mat Sci & Chem, Wuhan 430074, Hubei, Peoples R China
Wu, Xiuling
Zhang, Xiaoling
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Geosci, Fac Mat Sci & Chem, Wuhan 430074, Hubei, Peoples R ChinaChina Univ Geosci, Fac Mat Sci & Chem, Wuhan 430074, Hubei, Peoples R China
Zhang, Xiaoling
He, Kaihua
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Geosci, Sch Math & Phys, Wuhan 430074, Hubei, Peoples R ChinaChina Univ Geosci, Fac Mat Sci & Chem, Wuhan 430074, Hubei, Peoples R China