Pathway for a martensitic quartz-coesite transition

被引:0
|
作者
Schaffrinna, Tim [1 ]
Milman, Victor [2 ]
Winkler, Bjoern [1 ]
机构
[1] Goethe Univ, Inst Geosci, Frankfurt, Germany
[2] Dassault Syst BIOVIA, Cambridge, England
关键词
SHARING SILICATE TETRAHEDRA; PRESSURE CRYSTAL-CHEMISTRY; ELASTIC PROPERTIES; HIGH-TEMPERATURE; ALPHA-QUARTZ; SIO2; ASSIGNMENT; TRANSFORMATION;
D O I
10.1038/s41598-024-54088-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
An atomistic pathway for a strain-induced subsolidus martensitic transition between quartz and coesite was found by computing the set of the smallest atomic displacements required to transform a quartz structure into a coesite structure. A minimal transformation cell with 24 SiO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hbox {SiO}_{2}}$$\end{document} formula units is sufficient to describe the diffusionless martensitic transition from quartz to coesite. We identified two families of invariant shear planes during the martensitic transition, near the {101 over bar \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{1}}$$\end{document}1} and {123 over bar \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{3}}$$\end{document}2} set of planes, in agreement with the orientation of planar defect structures observed in quartz samples which experienced hypervelocity impacts. We calculated the reaction barrier using density functional theory and found that the barrier of 150 meV/atom is pressure invariant from ambient pressure up to 5 GPa, while the mean principal stress limiting the stability of strained quartz is approximate to\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\approx$$\end{document} 2 GPa. The model calculations quantitatively confirm that coesite can be formed in strained quartz at pressures significantly below the hydrostatic equilibrium transition pressure.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Direct quartz-coesite transformation in shocked porous sandstone from Kamil Crater (Egypt)
    Folco, L.
    Mugnaioli, E.
    Gemelli, M.
    Masotta, M.
    Campanale, F.
    GEOLOGY, 2018, 46 (09) : 739 - 742
  • [22] Experimental re-examination of the phase transition quartz-coesite -: The reaction in presence of H2O and at anhydrous conditions
    Mirwald, P. W.
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2007, 71 (15) : A672 - A672
  • [23] QUARTZ-COESITE TRANSITION REVISITED - REVERSED EXPERIMENTAL-DETERMINATION AT 500-1200-DEGREES-C AND RETRIEVED THERMOCHEMICAL PROPERTIES
    BOSE, K
    GANGULY, J
    AMERICAN MINERALOGIST, 1995, 80 (3-4) : 231 - 238
  • [24] The influence of OH in coesite on the kinetics of the coesite-quartz phase transition
    Lathe, C
    Koch-Müller, M
    Wirth, R
    van Westrenen, W
    Mueller, HJ
    Schilling, F
    Lauterjung, J
    AMERICAN MINERALOGIST, 2005, 90 (01) : 36 - 43
  • [25] Evidence for subsolidus quartz-coesite transformation in impact ejecta from the Australasian tektite strewn field
    Campanale, Fabrizio
    Mugnaioli, Enrico
    Folco, Luigi
    Gemmi, Mauro
    Lee, Martin R.
    Daly, Luke
    Glass, Billy P.
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2019, 264 : 105 - 117
  • [26] EVIDENCE FOR SUBSOLIDUS QUARTZ-COESITE TRANSFORMATION IN IMPACT EJECTA FROM THE AUSTRALASIAN TEKTITE STREWN FIELD
    Campanale, F.
    Mugnaioli, E.
    Folco, L.
    Gemmi, M.
    Lee, M. R.
    Daly, L.
    Glass, B. P.
    METEORITICS & PLANETARY SCIENCE, 2019, 54
  • [27] Overpressures induced by coesite-quartz transition in zircon
    Ye, K
    Liou, JB
    Cong, BL
    Maruyama, S
    AMERICAN MINERALOGIST, 2001, 86 (10) : 1151 - 1155
  • [28] The martensitic transition pathway in steel
    Liu, Tianwei
    Liang, Lunwei
    Raabe, Dierk
    Dai, Lanhong
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2023, 134 : 244 - 253
  • [29] QUARTZ PSEUDOMORPHS AFTER COESITE
    SMYTH, JR
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1977, 58 (06): : 555 - 555
  • [30] Kinetics of the coesite to quartz transformation
    Earth Planet Sci Lett, 1 (133):