Pathway for a martensitic quartz-coesite transition

被引:0
|
作者
Schaffrinna, Tim [1 ]
Milman, Victor [2 ]
Winkler, Bjoern [1 ]
机构
[1] Goethe Univ, Inst Geosci, Frankfurt, Germany
[2] Dassault Syst BIOVIA, Cambridge, England
关键词
SHARING SILICATE TETRAHEDRA; PRESSURE CRYSTAL-CHEMISTRY; ELASTIC PROPERTIES; HIGH-TEMPERATURE; ALPHA-QUARTZ; SIO2; ASSIGNMENT; TRANSFORMATION;
D O I
10.1038/s41598-024-54088-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
An atomistic pathway for a strain-induced subsolidus martensitic transition between quartz and coesite was found by computing the set of the smallest atomic displacements required to transform a quartz structure into a coesite structure. A minimal transformation cell with 24 SiO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hbox {SiO}_{2}}$$\end{document} formula units is sufficient to describe the diffusionless martensitic transition from quartz to coesite. We identified two families of invariant shear planes during the martensitic transition, near the {101 over bar \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{1}}$$\end{document}1} and {123 over bar \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{3}}$$\end{document}2} set of planes, in agreement with the orientation of planar defect structures observed in quartz samples which experienced hypervelocity impacts. We calculated the reaction barrier using density functional theory and found that the barrier of 150 meV/atom is pressure invariant from ambient pressure up to 5 GPa, while the mean principal stress limiting the stability of strained quartz is approximate to\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\approx$$\end{document} 2 GPa. The model calculations quantitatively confirm that coesite can be formed in strained quartz at pressures significantly below the hydrostatic equilibrium transition pressure.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] QUARTZ-COESITE TRANSITION
    KITAHARA, S
    KENNEDY, GC
    JOURNAL OF GEOPHYSICAL RESEARCH, 1964, 69 (24): : 5395 - +
  • [2] THE QUARTZ-COESITE TRANSITION
    BOYD, FR
    ENGLAND, JL
    JOURNAL OF GEOPHYSICAL RESEARCH, 1960, 65 (02): : 749 - 756
  • [3] Pathway for a martensitic quartz–coesite transition
    Tim Schaffrinna
    Victor Milman
    Björn Winkler
    Scientific Reports, 14
  • [4] EFFECT OF SHEAR ON QUARTZ-COESITE TRANSITION
    NAKA, S
    INAGAKI, M
    ITO, S
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1972, 55 (06) : 323 - &
  • [5] REEXAMINATION OF QUARTZ-COESITE TRANSITION IN ANVIL APPARATUS
    ROY, R
    FRUSHOUR, RH
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1971, 54 (11) : 589 - &
  • [6] EFFECTS OF QUARTZ-COESITE TRANSITION ON PHONON CONDUCTIVITY
    DARBHA, DM
    SCHLOESS.HH
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1974, 55 (04): : 422 - 422
  • [7] QUARTZ-COESITE EQUILIBRIUM
    PUGHIN, VA
    GEOKHIMIYA, 1982, (06): : 822 - 829
  • [8] An experiment study of quartz-coesite transition at differential stress
    ZHOU Yongsheng
    Chinese Science Bulletin, 2005, (05) : 446 - 451
  • [9] An experiment study of quartz-coesite transition at differential stress
    Zhou, YS
    He, CR
    Song, J
    Ma, SL
    Ma, J
    CHINESE SCIENCE BULLETIN, 2005, 50 (05): : 446 - 451
  • [10] QUARTZ-COESITE AND PRESS CALLIBRAS
    ESSENE, EJ
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1971, 52 (04): : 380 - &