Learning solutions of thermodynamics-based nonlinear constitutive material models using physics-informed neural networks

被引:13
|
作者
Rezaei, Shahed [1 ]
Moeineddin, Ahmad [2 ]
Harandi, Ali [3 ]
机构
[1] ACCESS eV, Intzestr 5, D-52072 Aachen, Germany
[2] Tech Univ Dresden, Inst Struct Anal, Georg Schumann Str 7, D-01187 Dresden, Germany
[3] Rhein Westfal TH Aachen, Inst Appl Mech, Mies van der Rohe Str 1, D-52074 Aachen, Germany
关键词
Physics-informed neural networks; Constitutive relations; Nonlinear material behavior; Path-dependent material models; Finite element analysis; PLASTICITY; DAMAGE;
D O I
10.1007/s00466-023-02435-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We applied physics-informed neural networks to solve the constitutive relations for nonlinear, path-dependent material behavior. As a result, the trained network not only satisfies all thermodynamic constraints but also instantly provides information about the current material state (i.e., free energy, stress, and the evolution of internal variables) under any given loading scenario without requiring initial data. One advantage of this work is that it bypasses the repetitive Newton iterations needed to solve nonlinear equations in complex material models. Furthermore, after training, the proposed approach requires significantly less effort in terms of implementation and computing time compared to the traditional methods. The trained model can be directly used in any finite element package (or other numerical methods) as a user-defined material model. We tested this methodology on rate-independent processes such as the classical von Mises plasticity model with a nonlinear hardening law, as well as local damage models for interface cracking behavior with a nonlinear softening law. In order to demonstrate the applicability of the methodology in handling complex path dependency in a three-dimensional (3D) scenario, we tested the approach using the equations governing a damage model for a three-dimensional interface model. Such models are frequently employed for intergranular fracture at grain boundaries. However, challenges remain in the proper definition of collocation points and in integrating several non-equality constraints that become active or non-active simultaneously. As long as we are in the training regime, we have observed a perfect agreement between the results obtained through the proposed methodology and those obtained using the classical approach. Finally, we compare this new approach against available standard methods and discuss the potential and remaining challenges for future developments.
引用
收藏
页码:333 / 366
页数:34
相关论文
共 50 条
  • [41] Efficient physics-informed neural networks using hash encoding
    Huang, Xinquan
    Alkhalifah, Tariq
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 501
  • [42] Solving the pulsar equation using physics-informed neural networks
    Stefanou, Petros
    Urban, Jorge F.
    Pons, Jose A.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 526 (01) : 1504 - 1511
  • [43] Synthesis of voiced sounds using physics-informed neural networks
    Yokota, Kazuya
    Ogura, Masataka
    Abe, Masajiro
    ACOUSTICAL SCIENCE AND TECHNOLOGY, 2024, 45 (06) : 333 - 336
  • [44] A framework based on physics-informed neural networks and extreme learning for the analysis of composite structures
    Yan, C. A.
    Vescovini, R.
    Dozio, L.
    COMPUTERS & STRUCTURES, 2022, 265
  • [45] Sparse wavefield reconstruction based on Physics-Informed neural networks
    Xu, Bin
    Zou, Yun
    Sha, Gaofeng
    Yang, Liang
    Cai, Guixi
    Li, Yang
    ULTRASONICS, 2025, 149
  • [46] Residual-based attention in physics-informed neural networks
    Anagnostopoulos, Sokratis J.
    Toscano, Juan Diego
    Stergiopulos, Nikolaos
    Karniadakis, George Em
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 421
  • [47] A Compact Memristor Model Based on Physics-Informed Neural Networks
    Lee, Younghyun
    Kim, Kyeongmin
    Lee, Jonghwan
    MICROMACHINES, 2024, 15 (02)
  • [48] Physics-informed neural networks based cascade loss model
    Feng Y.
    Song X.
    Yuan W.
    Lu H.
    Hangkong Dongli Xuebao/Journal of Aerospace Power, 2023, 38 (07): : 845 - 855
  • [49] Learning Free-Surface Flow with Physics-Informed Neural Networks
    Leiteritz, Raphael
    Hurler, Marcel
    Pflueger, Dirk
    20TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2021), 2021, : 1668 - 1673
  • [50] Physics-Informed Neural Networks via Stochastic Hamiltonian Dynamics Learning
    Bajaj, Chandrajit
    Minh Nguyen
    INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 2, INTELLISYS 2024, 2024, 1066 : 182 - 197