Learning solutions of thermodynamics-based nonlinear constitutive material models using physics-informed neural networks

被引:13
|
作者
Rezaei, Shahed [1 ]
Moeineddin, Ahmad [2 ]
Harandi, Ali [3 ]
机构
[1] ACCESS eV, Intzestr 5, D-52072 Aachen, Germany
[2] Tech Univ Dresden, Inst Struct Anal, Georg Schumann Str 7, D-01187 Dresden, Germany
[3] Rhein Westfal TH Aachen, Inst Appl Mech, Mies van der Rohe Str 1, D-52074 Aachen, Germany
关键词
Physics-informed neural networks; Constitutive relations; Nonlinear material behavior; Path-dependent material models; Finite element analysis; PLASTICITY; DAMAGE;
D O I
10.1007/s00466-023-02435-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We applied physics-informed neural networks to solve the constitutive relations for nonlinear, path-dependent material behavior. As a result, the trained network not only satisfies all thermodynamic constraints but also instantly provides information about the current material state (i.e., free energy, stress, and the evolution of internal variables) under any given loading scenario without requiring initial data. One advantage of this work is that it bypasses the repetitive Newton iterations needed to solve nonlinear equations in complex material models. Furthermore, after training, the proposed approach requires significantly less effort in terms of implementation and computing time compared to the traditional methods. The trained model can be directly used in any finite element package (or other numerical methods) as a user-defined material model. We tested this methodology on rate-independent processes such as the classical von Mises plasticity model with a nonlinear hardening law, as well as local damage models for interface cracking behavior with a nonlinear softening law. In order to demonstrate the applicability of the methodology in handling complex path dependency in a three-dimensional (3D) scenario, we tested the approach using the equations governing a damage model for a three-dimensional interface model. Such models are frequently employed for intergranular fracture at grain boundaries. However, challenges remain in the proper definition of collocation points and in integrating several non-equality constraints that become active or non-active simultaneously. As long as we are in the training regime, we have observed a perfect agreement between the results obtained through the proposed methodology and those obtained using the classical approach. Finally, we compare this new approach against available standard methods and discuss the potential and remaining challenges for future developments.
引用
收藏
页码:333 / 366
页数:34
相关论文
共 50 条
  • [31] Advancing material property prediction: using physics-informed machine learning models for viscosity
    Chew, Alex K.
    Sender, Matthew
    Kaplan, Zachary
    Chandrasekaran, Anand
    Chief Elk, Jackson
    Browning, Andrea R.
    Kwak, H. Shaun
    Halls, Mathew D.
    Afzal, Mohammad Atif Faiz
    JOURNAL OF CHEMINFORMATICS, 2024, 16 (01)
  • [32] Advancing material property prediction: using physics-informed machine learning models for viscosity
    Alex K. Chew
    Matthew Sender
    Zachary Kaplan
    Anand Chandrasekaran
    Jackson Chief Elk
    Andrea R. Browning
    H. Shaun Kwak
    Mathew D. Halls
    Mohammad Atif Faiz Afzal
    Journal of Cheminformatics, 16
  • [33] Constitutive model characterization and discovery using physics-informed deep learning
    Haghighat, Ehsan
    Abouali, Sahar
    Vaziri, Reza
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 120
  • [34] Forecasting Buoy Observations Using Physics-Informed Neural Networks
    Schmidt, Austin B.
    Pokhrel, Pujan
    Abdelguerfi, Mahdi
    Ioup, Elias
    Dobson, David
    IEEE JOURNAL OF OCEANIC ENGINEERING, 2024, 49 (03) : 821 - 840
  • [35] Synthesis of voiced sounds using physics-informed neural networks
    Yokota, Kazuya
    Ogura, Masataka
    Abe, Masajiro
    Acoustical Science and Technology, 45 (06): : 333 - 336
  • [36] Inverse Physics-Informed Neural Networks for transport models in porous materials
    Berardi, Marco
    Difonzo, Fabio, V
    Icardi, Matteo
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2025, 435
  • [37] Using physics-informed neural networks to compute quasinormal modes
    Cornell, Alan S.
    Ncube, Anele
    Harmsen, Gerhard
    PHYSICAL REVIEW D, 2022, 106 (12)
  • [38] Optimal control of PDEs using physics-informed neural networks
    Mowlavi, Saviz
    Nabi, Saleh
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 473
  • [39] Structural parameter identification using physics-informed neural networks
    Guo, Xin-Yu
    Fang, Sheng-En
    MEASUREMENT, 2023, 220
  • [40] PINNeik: Eikonal solution using physics-informed neural networks
    bin Waheed, Umair
    Haghighat, Ehsan
    Alkhalifah, Tariq
    Song, Chao
    Hao, Qi
    COMPUTERS & GEOSCIENCES, 2021, 155