Generalized second order vectorial ∞-eigenvalue problems

被引:0
|
作者
Clark, Ed [1 ]
Katzourakis, Nikos [1 ]
机构
[1] Univ Reading, Dept Math & Stat, Whiteknights Campus,Pepper Lane, Reading RG6 6AX, England
基金
英国工程与自然科学研究理事会;
关键词
calculus of variations in L-infinity; infinity-eigenvalue problem; nonlinear eigenvalue problems; absolute minimizers; Lagrange multipliers; LOWER SEMICONTINUITY; ABSOLUTE MINIMIZERS; EXISTENCE;
D O I
10.1017/prm.2024.27
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem of minimizing the L-infinity norm of a function of the hessian over a class of maps, subject to a mass constraint involving the L(infinity )norm of a function of the gradient and the map itself. We assume zeroth and first order Dirichlet boundary data, corresponding to the "hinged" and the "clamped" cases. By employing the method of L-p approximations, we establish the existence of a special L-infinity minimizer, which solves a divergence PDE system with measure coefficients as parameters. This is a counterpart of the Aronsson-Euler system corresponding to this constrained variational problem. Furthermore, we establish upper and lower bounds for the eigenvalue.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Second order duality for variational problems involving generalized convexity
    Jayswal A.
    Stancu-Minasian I.M.
    Choudhury S.
    OPSEARCH, 2015, 52 (3) : 582 - 596
  • [42] The pseudoperturbation method in generalized eigenvalue problems
    Loginov, B. V.
    Makeeva, O. V.
    DOKLADY MATHEMATICS, 2008, 77 (02) : 194 - 197
  • [43] The pseudoperturbation method in generalized eigenvalue problems
    B. V. Loginov
    O. V. Makeeva
    Doklady Mathematics, 2008, 77 : 194 - 197
  • [44] Algorithms for the generalized and nonlinear eigenvalue problems
    Hasan, MA
    PROCEEDINGS OF THE 2003 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2003, : 1470 - 1475
  • [45] Neurodynamic approach for generalized eigenvalue problems
    Zhang, Quanju
    Feng, Fuye
    Liu, Fuxian
    2006 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY, PTS 1 AND 2, PROCEEDINGS, 2006, : 345 - 350
  • [46] ALGORITHM FOR GENERALIZED MATRIX EIGENVALUE PROBLEMS
    MOLER, CB
    STEWART, GW
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1973, 10 (02) : 241 - 256
  • [47] Generalized multipoint conjugate eigenvalue problems
    Wong, PJY
    Agarwal, RP
    MATHEMATICAL AND COMPUTER MODELLING, 2000, 32 (5-6) : 733 - 745
  • [48] Generalized eigenvalue problems with specified eigenvalues
    Kressner, Daniel
    Mengi, Emre
    Nakic, Ivica
    Truhar, Ninoslav
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2014, 34 (02) : 480 - 501
  • [49] Conjugate eigenvalue problems and Generalized Sturmians
    Goscinski, O
    ADVANCES IN QUANTUM CHEMISTRY, VOL 41, 2002, 41 : 51 - 85
  • [50] Dynamic equations of generalized eigenvalue problems
    Jiang, YL
    Chen, RMM
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2002, E85A (08) : 1974 - 1978