Generalized second order vectorial ∞-eigenvalue problems

被引:0
|
作者
Clark, Ed [1 ]
Katzourakis, Nikos [1 ]
机构
[1] Univ Reading, Dept Math & Stat, Whiteknights Campus,Pepper Lane, Reading RG6 6AX, England
基金
英国工程与自然科学研究理事会;
关键词
calculus of variations in L-infinity; infinity-eigenvalue problem; nonlinear eigenvalue problems; absolute minimizers; Lagrange multipliers; LOWER SEMICONTINUITY; ABSOLUTE MINIMIZERS; EXISTENCE;
D O I
10.1017/prm.2024.27
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem of minimizing the L-infinity norm of a function of the hessian over a class of maps, subject to a mass constraint involving the L(infinity )norm of a function of the gradient and the map itself. We assume zeroth and first order Dirichlet boundary data, corresponding to the "hinged" and the "clamped" cases. By employing the method of L-p approximations, we establish the existence of a special L-infinity minimizer, which solves a divergence PDE system with measure coefficients as parameters. This is a counterpart of the Aronsson-Euler system corresponding to this constrained variational problem. Furthermore, we establish upper and lower bounds for the eigenvalue.
引用
收藏
页数:21
相关论文
共 50 条