Generalized second order vectorial ∞-eigenvalue problems

被引:0
|
作者
Clark, Ed [1 ]
Katzourakis, Nikos [1 ]
机构
[1] Univ Reading, Dept Math & Stat, Whiteknights Campus,Pepper Lane, Reading RG6 6AX, England
基金
英国工程与自然科学研究理事会;
关键词
calculus of variations in L-infinity; infinity-eigenvalue problem; nonlinear eigenvalue problems; absolute minimizers; Lagrange multipliers; LOWER SEMICONTINUITY; ABSOLUTE MINIMIZERS; EXISTENCE;
D O I
10.1017/prm.2024.27
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem of minimizing the L-infinity norm of a function of the hessian over a class of maps, subject to a mass constraint involving the L(infinity )norm of a function of the gradient and the map itself. We assume zeroth and first order Dirichlet boundary data, corresponding to the "hinged" and the "clamped" cases. By employing the method of L-p approximations, we establish the existence of a special L-infinity minimizer, which solves a divergence PDE system with measure coefficients as parameters. This is a counterpart of the Aronsson-Euler system corresponding to this constrained variational problem. Furthermore, we establish upper and lower bounds for the eigenvalue.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Quadratic Eigenvalue Problems for Second Order Systems
    Currie, Sonja
    Watson, Bruce A.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2012, 6 (03) : 729 - 748
  • [2] Quadratic Eigenvalue Problems for Second Order Systems
    Sonja Currie
    Bruce A. Watson
    Complex Analysis and Operator Theory, 2012, 6 : 729 - 748
  • [3] Restarted generalized second-order krylov subspace methods for solving quadratic eigenvalue problems
    Zhou, Liping
    Bao, Liang
    Lin, Yiqin
    Wei, Yimin
    Wu, Qinghua
    International Journal of Computational and Mathematical Sciences, 2010, 4 (03): : 148 - 155
  • [4] Restarted generalized second-order krylov subspace methods for solving quadratic eigenvalue problems
    Zhou, Liping
    Bao, Liang
    Lin, Yiqin
    Wei, Yimin
    Wu, Qinghua
    World Academy of Science, Engineering and Technology, 2010, 67 : 429 - 436
  • [5] Eigenvalue problems of second order impulsive differential equations
    Wang, Weibing
    Shen, Jianhua
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (01) : 142 - 150
  • [6] Second order obstacle problems for vectorial functions and integrands with subquadratic growth
    Fuchs, M
    Li, GB
    Martio, O
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1998, 23 (02): : 549 - 558
  • [7] A second-order perturbation method for fuzzy eigenvalue problems
    Guo, Mengwu
    Zhong, Hongzhi
    You, Kuan
    ENGINEERING COMPUTATIONS, 2016, 33 (02) : 306 - 327
  • [8] A novel method for solving second order fractional eigenvalue problems
    Reutskiy, S. Yu.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 306 : 133 - 153
  • [9] On eigenvalue intervals for discrete second order boundary value problems
    Du Z.-J.
    Xue C.-Y.
    Ge W.-G.
    Acta Mathematicae Applicatae Sinica, 2005, 21 (1) : 105 - 114
  • [10] GENERALIZED EIGENVALUE PROBLEMS
    SCHWARTZ, C
    ANNALS OF PHYSICS, 1967, 42 (03) : 367 - &