Deciphering protein interaction network dynamics with a machine learning-based framework

被引:1
|
作者
Reed, Tavis J. [1 ]
Criste, Ileana M. [1 ]
机构
[1] Princeton Univ, Princeton, NJ 08544 USA
关键词
D O I
10.1038/s41592-024-02180-2
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We developed Tapioca, an integrative ensemble machine learning-based framework, to accurately predict global protein-protein interaction network dynamics. Tapioca enabled the characterization of host regulation during reactivation from latency of an oncogenic virus. Introducing an interactome homology analysis method, we identified a proviral host factor with broad relevance for herpesviruses.
引用
收藏
页码:387 / 388
页数:2
相关论文
共 50 条
  • [21] A vigorous machine learning-based framework for the identification of LUTD biomarkers
    Akshay, A.
    Besic, M.
    Burkhard, F.
    Bruggmann, R.
    Monastyrskaya, K.
    Gheinani, Hashemi A.
    EUROPEAN UROLOGY, 2022, 81 : S1047 - S1047
  • [22] A machine learning-based framework for analyzing car brand styling
    Li, Baojun
    Dong, Ying
    Wen, Zhijie
    Liu, Mingzeng
    Yang, Lei
    Song, Mingliang
    ADVANCES IN MECHANICAL ENGINEERING, 2018, 10 (07)
  • [23] Machine learning-based framework for saliency detection in distorted images
    Yuzhen Niu
    Lening Lin
    Yuzhong Chen
    Lingling Ke
    Multimedia Tools and Applications, 2017, 76 : 26329 - 26353
  • [24] A machine learning-based framework for predicting game server load
    Ozer, Cagdas
    Cevik, Taner
    Gurhanli, Ahmet
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (06) : 9527 - 9546
  • [25] Machine Learning-based Optimal Framework for Internet of Things Networks
    Alsafasfeh, Moath
    Arida, Zaid A.
    Saraereh, Omar A.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 71 (03): : 5355 - 5380
  • [26] A novel machine learning-based spatialized population synthesis framework
    Khachman, Mohamed
    Morency, Catherine
    Ciari, Francesco
    TRANSPORTATION, 2024,
  • [27] A machine learning-based framework for mapping hydrogen at the atomic scale
    Zhao, Qingkun
    Zhu, Qi
    Zhang, Zhenghao
    Yin, Binglun
    Gao, Huajian
    Zhou, Haofei
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2024, 121 (39)
  • [28] Machine Learning-Based Open Framework for Multiresolution Multiagent Simulation
    Pierzchala, Dariusz
    Czuba, Przemyslaw
    MODELLING AND SIMULATION FOR AUTONOMOUS SYSTEMS (MESAS 2019), 2020, 11995 : 216 - 228
  • [29] A machine learning-based analytical framework for employee turnover prediction
    Wang, Xinlei
    Zhi, Jianing
    JOURNAL OF MANAGEMENT ANALYTICS, 2021, 8 (03) : 351 - 370
  • [30] A machine learning-based framework for predicting game server load
    Çağdaş Özer
    Taner Çevik
    Ahmet Gürhanlı
    Multimedia Tools and Applications, 2021, 80 : 9527 - 9546