Deciphering protein interaction network dynamics with a machine learning-based framework

被引:1
|
作者
Reed, Tavis J. [1 ]
Criste, Ileana M. [1 ]
机构
[1] Princeton Univ, Princeton, NJ 08544 USA
关键词
D O I
10.1038/s41592-024-02180-2
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We developed Tapioca, an integrative ensemble machine learning-based framework, to accurately predict global protein-protein interaction network dynamics. Tapioca enabled the characterization of host regulation during reactivation from latency of an oncogenic virus. Introducing an interactome homology analysis method, we identified a proviral host factor with broad relevance for herpesviruses.
引用
收藏
页码:387 / 388
页数:2
相关论文
共 50 条
  • [2] A Machine Learning-Based Framework to Estimate the Lifetime of Network Line Cards
    Herrera, Juan Luis
    Polverini, Marco
    Galan-Jimenez, Jaime
    NOMS 2020 - PROCEEDINGS OF THE 2020 IEEE/IFIP NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM 2020: MANAGEMENT IN THE AGE OF SOFTWARIZATION AND ARTIFICIAL INTELLIGENCE, 2020,
  • [3] Machine Learning-based Host-Pathogen Protein-Protein Interaction Prediction
    Turk, Erdem
    Karabulut, Onur Can
    Al-alie, Al-shaima Khaled Abdullah
    Suzek, Baris Ethem
    CURRENT CLINICAL MICROBIOLOGY REPORTS, 2025, 12 (01):
  • [4] Machine Learning-Based Network Attack Classification
    Liang, Tianhong
    Ma, Li
    Wang, Zhichuang
    Hou, Fangyuan
    39TH YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION, YAC 2024, 2024, : 2392 - 2397
  • [5] Current Status of Machine Learning-Based Methods for Identifying Protein-Protein Interaction Sites
    Wang, Bing
    Sun, Wenlong
    Zhang, Jun
    Chen, Peng
    CURRENT BIOINFORMATICS, 2013, 8 (02) : 177 - 182
  • [6] An effective machine learning-based model for the prediction of protein–protein interaction sites in health systems
    Muhammad Tahir
    Fazlullah Khan
    Maqsood Hayat
    Mohammad Dahman Alshehri
    Neural Computing and Applications, 2024, 36 : 65 - 75
  • [7] An End-to-End Framework for Machine Learning-Based Network Intrusion Detection System
    De Carvalho Bertoli, Gustavo
    Pereira Junior, Lourenco Alves
    Saotome, Osamu
    Dos Santos, Aldri L.
    Verri, Filipe Alves Neto
    Marcondes, Cesar Augusto Cavalheiro
    Barbieri, Sidnei
    Rodrigues, Moises S.
    Parente De Oliveira, Jose M.
    IEEE ACCESS, 2021, 9 : 106790 - 106805
  • [8] Framework for Testing Robustness of Machine Learning-Based Classifiers
    Chuah, Joshua
    Kruger, Uwe
    Wang, Ge
    Yan, Pingkun
    Hahn, Juergen
    JOURNAL OF PERSONALIZED MEDICINE, 2022, 12 (08):
  • [9] Optimizing diabetes classification with a machine learning-based framework
    Feng, Xin
    Cai, Yihuai
    Xin, Ruihao
    BMC BIOINFORMATICS, 2023, 24 (01)
  • [10] Optimizing diabetes classification with a machine learning-based framework
    Xin Feng
    Yihuai Cai
    Ruihao Xin
    BMC Bioinformatics, 24