Locality of percolation for graphs with polynomial growth

被引:2
|
作者
Contreras, Daniel [1 ]
Martineau, Sebastien [2 ]
Tassion, Vincent [1 ]
机构
[1] Swiss Fed Inst Technol, Ramistr 101, CH-8092 Zurich, Switzerland
[2] Sorbonne Univ, LPSM, 4 Pl Jussieu, F-75005 Paris, France
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
percolation; Schramm's Locality Conjecture; transitive graphs of polynomial growth;
D O I
10.1214/22-ECP508
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Schramm's Locality Conjecture asserts that the value of the critical parameter pc of a graph satisfying pc < 1 depends only on its local structure. In this paper, we prove this conjecture in the particular case of transitive graphs with polynomial growth. Our proof relies on two recent works about such graphs, namely supercritical sharpness of percolation by the same authors and a finitary structure theorem by Tessera and Tointon.
引用
收藏
页码:1 / 9
页数:10
相关论文
共 50 条