Locality of percolation for graphs with polynomial growth

被引:2
|
作者
Contreras, Daniel [1 ]
Martineau, Sebastien [2 ]
Tassion, Vincent [1 ]
机构
[1] Swiss Fed Inst Technol, Ramistr 101, CH-8092 Zurich, Switzerland
[2] Sorbonne Univ, LPSM, 4 Pl Jussieu, F-75005 Paris, France
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
percolation; Schramm's Locality Conjecture; transitive graphs of polynomial growth;
D O I
10.1214/22-ECP508
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Schramm's Locality Conjecture asserts that the value of the critical parameter pc of a graph satisfying pc < 1 depends only on its local structure. In this paper, we prove this conjecture in the particular case of transitive graphs with polynomial growth. Our proof relies on two recent works about such graphs, namely supercritical sharpness of percolation by the same authors and a finitary structure theorem by Tessera and Tointon.
引用
收藏
页码:1 / 9
页数:10
相关论文
共 50 条
  • [31] Community Recovery in Graphs with Locality
    Chen, Yuxin
    Kamath, Govinda M.
    Suh, Changho
    Tse, David
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 48, 2016, 48
  • [32] Limited Disclosure and Locality in Graphs
    Guttman, Joshua D.
    PROGRAMMING LANGUAGES WITH APPLICATIONS TO BIOLOGY AND SECURITY: ESSAYS DEDICATED TO PIERPAOLO DEGANO ON THE OCCASION OF HIS 65TH BIRTHDAY, 2015, 9465 : 44 - 46
  • [33] Boolean Percolation on Doubling Graphs
    Coletti, Cristian F.
    Miranda, Daniel
    Grynberg, Sebastian P.
    JOURNAL OF STATISTICAL PHYSICS, 2020, 178 (03) : 814 - 831
  • [34] Complementary algorithms for graphs and percolation
    Lee, Michael J.
    PHYSICAL REVIEW E, 2007, 76 (02)
  • [35] Inhomogeneous Percolation on Ladder Graphs
    Szabo, Reka
    Valesin, Daniel
    JOURNAL OF THEORETICAL PROBABILITY, 2020, 33 (02) : 992 - 1010
  • [36] Boolean Percolation on Doubling Graphs
    Cristian F. Coletti
    Daniel Miranda
    Sebastian P. Grynberg
    Journal of Statistical Physics, 2020, 178 : 814 - 831
  • [37] CLUTTER PERCOLATION AND RANDOM GRAPHS
    MCDIARD, C
    MATHEMATICAL PROGRAMMING STUDY, 1980, 13 (AUG): : 17 - 25
  • [38] ON AB PERCOLATION ON BIPARTITE GRAPHS
    WIERMAN, JC
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (08): : 1945 - 1949
  • [39] Clique percolation in random graphs
    Li, Ming
    Deng, Youjin
    Wang, Bing-Hong
    PHYSICAL REVIEW E, 2015, 92 (04)
  • [40] Vertex percolation on expander graphs
    Ben-Shimon, Sonny
    Krivelevich, Michael
    EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (02) : 339 - 350