Sensitivity analysis of risk assessment for continuous Markov process Monte Carlo method using correlated sampling method

被引:1
|
作者
Morishita, Yuki [1 ]
Yamamoto, Akio [1 ]
Endo, Tomohiro [1 ]
机构
[1] Nagoya Univ, Furo Cho,Chikusa Ku, Nagoya, Aichi 4648603, Japan
关键词
Sensitivity analysis; CMMC coupling method; correlated sampling method; PRA; risk assessment; DYNAMICS; CHAIN;
D O I
10.1080/00223131.2023.2231464
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The correlated sampling method is applied to the continuous Markov-chain Monte-Carlo (CMMC) method to efficiently perform sensitivity analysis of input parameters such as the failure rate of safety components. In the correlated sampling method, the original and the perturbed samples are assumed to trace an identical accident sequence, but the weight of the perturbed sample is adjusted to incorporate the variation of input data. The present method is applied to the sensitivity analysis of the safety evaluation of spent fuel pools. The result indicates that the sensitivity analysis for the CMMC coupling method can be efficiently carried out using the correlated sampling method.
引用
收藏
页码:1573 / 1585
页数:13
相关论文
共 50 条
  • [41] Seismic parameter estimation using Markov Chain Monte Carlo Method
    Zhang, Guang-Zhi
    Wang, Dan-Yang
    Yin, Xing-Yao
    Shiyou Diqiu Wuli Kantan/Oil Geophysical Prospecting, 2011, 46 (04): : 605 - 609
  • [42] Bayesian face recognition using a Markov chain Monte Carlo method
    Matsui, A
    Clippingdale, S
    Uzawa, F
    Matsumoto, T
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, 2004, : 918 - 921
  • [43] ADJOINT MONTE-CARLO METHOD FOR RELIABILITY ANALYSIS OF A MARKOV SYSTEM
    BUSLIK, AJ
    TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1975, 22 (NOV16): : 285 - 286
  • [44] Monte Carlo Method in risk analysis for investment projects
    Platon, Victor
    Constantinescu, Andreea
    EMERGING MARKETS QUERIES IN FINANCE AND BUSINESS (EMQ 2013), 2014, 15 : 393 - 400
  • [45] Runway Incursion Risk Assessment Based on the Monte Carlo Method
    Zhang, Z. N.
    Zhang, Y. Q.
    Gao, Z.
    INTERNATIONAL CONFERENCE ON ADVANCES IN MANAGEMENT ENGINEERING AND INFORMATION TECHNOLOGY (AMEIT 2015), 2015, : 716 - 723
  • [46] Discretization of continuous Markov chains and Markov chain Monte Carlo convergence assessment
    Guihenneuc-Jouyaux, C
    Robert, CP
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1998, 93 (443) : 1055 - 1067
  • [47] Discriminant analysis of interval data using Monte Carlo method in assessment of overlap
    Jahanshahloo, G. R.
    Lotfi, F. Hosseinzadeh
    Balf, F. Rezai
    Rezai, H. Zhiani
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 191 (02) : 521 - 532
  • [48] Improving Bayesian analysis for LISA Pathfinder using an efficient Markov Chain Monte Carlo method
    Ferraioli, Luigi
    Porter, Edward K.
    Armano, Michele
    Audley, Heather
    Congedo, Giuseppe
    Diepholz, Ingo
    Gibert, Ferran
    Hewitson, Martin
    Hueller, Mauro
    Karnesis, Nikolaos
    Korsakova, Natalia
    Nofrarias, Miquel
    Plagnol, Eric
    Vitale, Stefano
    EXPERIMENTAL ASTRONOMY, 2014, 37 (01) : 109 - 125
  • [49] Improving Bayesian analysis for LISA Pathfinder using an efficient Markov Chain Monte Carlo method
    Luigi Ferraioli
    Edward K. Porter
    Michele Armano
    Heather Audley
    Giuseppe Congedo
    Ingo Diepholz
    Ferran Gibert
    Martin Hewitson
    Mauro Hueller
    Nikolaos Karnesis
    Natalia Korsakova
    Miquel Nofrarias
    Eric Plagnol
    Stefano Vitale
    Experimental Astronomy, 2014, 37 : 109 - 125
  • [50] Risk analysis of energy efficiency investments in buildings using the Monte Carlo method
    Togashi, Eisuke
    JOURNAL OF BUILDING PERFORMANCE SIMULATION, 2019, 12 (04) : 504 - 522