Sensitivity analysis of risk assessment for continuous Markov process Monte Carlo method using correlated sampling method

被引:1
|
作者
Morishita, Yuki [1 ]
Yamamoto, Akio [1 ]
Endo, Tomohiro [1 ]
机构
[1] Nagoya Univ, Furo Cho,Chikusa Ku, Nagoya, Aichi 4648603, Japan
关键词
Sensitivity analysis; CMMC coupling method; correlated sampling method; PRA; risk assessment; DYNAMICS; CHAIN;
D O I
10.1080/00223131.2023.2231464
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The correlated sampling method is applied to the continuous Markov-chain Monte-Carlo (CMMC) method to efficiently perform sensitivity analysis of input parameters such as the failure rate of safety components. In the correlated sampling method, the original and the perturbed samples are assumed to trace an identical accident sequence, but the weight of the perturbed sample is adjusted to incorporate the variation of input data. The present method is applied to the sensitivity analysis of the safety evaluation of spent fuel pools. The result indicates that the sensitivity analysis for the CMMC coupling method can be efficiently carried out using the correlated sampling method.
引用
收藏
页码:1573 / 1585
页数:13
相关论文
共 50 条
  • [31] Sensitivity analysis, Monte Carlo risk analysis, and Bayesian uncertainty assessment
    Greenland, S
    RISK ANALYSIS, 2001, 21 (04) : 579 - 583
  • [32] Towards Correlated Sampling for the Fixed-Node Diffusion Quantum Monte Carlo Method
    Berner, Raphael
    Petz, Rene
    Luechow, Arne
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2014, 69 (07): : 279 - 286
  • [33] Improvement of fission source distribution by correlated sampling method in Monte Carlo perturbation calculations
    Kim, Song Hyun
    Yamanaka, Masao
    Pyeon, Cheol Ho
    JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY, 2018, 55 (08) : 945 - 954
  • [34] Failure risk assessment method of civil aircraft based on Monte Carlo method
    Guo Y.
    Sun Y.
    Li L.
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2017, 38 (10):
  • [35] Deconvolution and credible intervals using Markov chain Monte Carlo method
    Hovorka, R
    MEDICAL DATA ANALYSIS, PROCEEDINGS, 2000, 1933 : 111 - 121
  • [36] Estimation of hyperbolic diffusion using the Markov chain Monte Carlo method
    Tse, YK
    Zhang, XB
    Yu, J
    QUANTITATIVE FINANCE, 2004, 4 (02) : 158 - 169
  • [37] Interpretation of pooling experiments using the Markov chain Monte Carlo method
    Knill, E
    Schliep, A
    Torney, DC
    JOURNAL OF COMPUTATIONAL BIOLOGY, 1996, 3 (03) : 395 - 406
  • [38] Time delay estimation using Markov Chain Monte Carlo method
    Li Jing
    Zhao Yong-Jun
    Li Dong-Hai
    ACTA PHYSICA SINICA, 2014, 63 (13)
  • [39] Bayesian face recognition using a Markov chain Monte Carlo method
    Matsui, Atsushi
    Clippingdale, Simon
    Uzawa, Fumiki
    Matsumoto, Takashi
    NHK Laboratories Note, 2004, (487):
  • [40] Markov chain Monte Carlo analysis of correlated count data
    Chib, S
    Winkelmann, R
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2001, 19 (04) : 428 - 435