COLLABORATIVE SPATIAL-TEMPORAL DISTILLATION FOR EFFICIENT VIDEO DERAINING

被引:0
|
作者
Hu, Yuzhang [1 ]
Liu, Minghao [1 ]
Yang, Wenhan [2 ]
Liu, Jiaying [1 ]
Guo, Zongming [1 ]
机构
[1] Peking Univ, Beijing, Peoples R China
[2] Peng Cheng Lab, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
Video Deraining; Knowledge Distillation; Spatial Alignment; Temporal Alignment; Spatial-Temporal Adaptor; RAIN;
D O I
10.1109/ICME55011.2023.00332
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a novel knowledge distillation framework to improve the efficiency of deep networks for video deraining. The knowledge is transferred from a large-scale powerful teacher network to a compact efficient student network via the proposed collaborative spatial-temporal distillation framework. The framework is equipped with three collaboration schemes of different granularities that make use of spatial-temporal redundancy in a complementary way for better distillation performance. First, the spatial alignment module applies distillation constraints at different spatial scales to achieve better scale invariance in transferred knowledge. Second, the temporal alignment module traces both temporal status between teacher and student separately and collaboratively, to comprehensively utilize inter-frame information. Third, these two alignment modules interact through a spatial-temporal adaptor, where spatial-temporal knowledge is transferred in a unified framework. Extensive experiments demonstrate the superiority of our distillation framework as well as the effectiveness of each module. Our code is available at: https://github.com/HuYuzhang/Knowledge-Distillation.
引用
收藏
页码:1937 / 1942
页数:6
相关论文
共 50 条
  • [41] Deep Video Harmonization by Improving Spatial-temporal Consistency
    Chen, Xiuwen
    Fang, Li
    Ye, Long
    Zhang, Qin
    MACHINE INTELLIGENCE RESEARCH, 2024, 21 (01) : 46 - 54
  • [42] Perceptual Spatial-temporal Video Compressive Sensing Network
    Liu, Wan
    Xie, Xuemei
    Zhao, Zhifu
    Shi, Guangming
    ELEVENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2019), 2020, 11373
  • [43] Exploiting Spatial-temporal Correlations for Video Anomaly Detection
    Zhao, Mengyang
    Liu, Yang
    Liu, Jing
    Zeng, Xinhua
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 1727 - 1733
  • [44] Enhanced spatial-temporal freedom for video frame interpolation
    Hao-Dong Li
    Hui Yin
    Zhi-Hao Liu
    Hua Huang
    Applied Intelligence, 2023, 53 : 10535 - 10547
  • [45] WIDE AREA VIDEO SURVEILLANCE WITH SPATIAL-TEMPORAL CONSTRAINTS
    Shu, Henry
    Hsu, Yu-Feng
    Yu, Shiaw-Shian
    Chen, Tsuhan
    2012 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2012), 2012, : 33 - 36
  • [46] Spatial-temporal joint probability images for video segmentation
    Li, ZN
    Zhong, X
    Drew, MS
    PATTERN RECOGNITION, 2002, 35 (09) : 1847 - 1867
  • [47] Video classification using spatial-temporal features and PCA
    Xu, LQ
    Li, YM
    2003 INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOL III, PROCEEDINGS, 2003, : 485 - 488
  • [48] VIDEO RETARGETING WITH NONLINEAR SPATIAL-TEMPORAL SALIENCY FUSION
    Lu, Taoran
    Yuan, Zheng
    Huang, Yu
    Wu, Dapeng
    Yu, Heather
    2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 1801 - 1804
  • [49] A video segmentation algorithm based on spatial-temporal information
    Zhu, H
    Li, ZM
    2002 INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CIRCUITS AND SYSTEMS AND WEST SINO EXPOSITION PROCEEDINGS, VOLS 1-4, 2002, : 566 - 569
  • [50] Video Recoloring via Spatial-Temporal Geometric Palettes
    Du, Zheng-Jun
    Lei, Kai-Xiang
    Xu, Kun
    Tan, Jianchao
    Gingold, Yotam
    ACM TRANSACTIONS ON GRAPHICS, 2021, 40 (04):