COLLABORATIVE SPATIAL-TEMPORAL DISTILLATION FOR EFFICIENT VIDEO DERAINING

被引:0
|
作者
Hu, Yuzhang [1 ]
Liu, Minghao [1 ]
Yang, Wenhan [2 ]
Liu, Jiaying [1 ]
Guo, Zongming [1 ]
机构
[1] Peking Univ, Beijing, Peoples R China
[2] Peng Cheng Lab, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
Video Deraining; Knowledge Distillation; Spatial Alignment; Temporal Alignment; Spatial-Temporal Adaptor; RAIN;
D O I
10.1109/ICME55011.2023.00332
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a novel knowledge distillation framework to improve the efficiency of deep networks for video deraining. The knowledge is transferred from a large-scale powerful teacher network to a compact efficient student network via the proposed collaborative spatial-temporal distillation framework. The framework is equipped with three collaboration schemes of different granularities that make use of spatial-temporal redundancy in a complementary way for better distillation performance. First, the spatial alignment module applies distillation constraints at different spatial scales to achieve better scale invariance in transferred knowledge. Second, the temporal alignment module traces both temporal status between teacher and student separately and collaboratively, to comprehensively utilize inter-frame information. Third, these two alignment modules interact through a spatial-temporal adaptor, where spatial-temporal knowledge is transferred in a unified framework. Extensive experiments demonstrate the superiority of our distillation framework as well as the effectiveness of each module. Our code is available at: https://github.com/HuYuzhang/Knowledge-Distillation.
引用
收藏
页码:1937 / 1942
页数:6
相关论文
共 50 条
  • [21] Efficient GPU Spatial-Temporal Multitasking
    Liang, Yun
    Huynh Phung Huynh
    Rupnow, Kyle
    Goh, Rick Siow Mong
    Chen, Deming
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2015, 26 (03) : 748 - 760
  • [22] Spatial-temporal decorrelation for image/video coding
    Wang, Miaohui
    Ngan, King Ngi
    Xu, Long
    2012 PICTURE CODING SYMPOSIUM (PCS), 2012, : 201 - 204
  • [23] SPATIAL-TEMPORAL ATTENTION ANALYSIS FOR HOME VIDEO
    Qiu, Xuekan
    Jiang, Shuqiang
    Liu, Huiying
    Huang, Qingming
    Cao, Longbing
    2008 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOLS 1-4, 2008, : 1517 - +
  • [24] Video summarization by spatial-temporal graph optimization
    Lu, S
    Lyu, MR
    King, I
    2004 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL 2, PROCEEDINGS, 2004, : 197 - 200
  • [25] Efficient spatial-temporal chaotic mixing in microchannels
    Niu, XZ
    Lee, YK
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2003, 13 (03) : 454 - 462
  • [26] Video Captioning Based on the Spatial-Temporal Saliency Tracing
    Zhou, Yuanen
    Hu, Zhenzhen
    Liu, Xueliang
    Wang, Meng
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING, PT I, 2018, 11164 : 59 - 70
  • [27] Deep Video Harmonization by Improving Spatial-temporal Consistency
    Xiuwen Chen
    Li Fang
    Long Ye
    Qin Zhang
    Machine Intelligence Research, 2024, 21 : 46 - 54
  • [28] Spatial-Temporal Separable Attention for Video Action Recognition
    Guo, Xi
    Hu, Yikun
    Chen, Fang
    Jin, Yuhui
    Qiao, Jian
    Huang, Jian
    Yang, Qin
    2022 INTERNATIONAL CONFERENCE ON FRONTIERS OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING, FAIML, 2022, : 224 - 228
  • [29] Spatial-Temporal Transformer for Video Snapshot Compressive Imaging
    Wang, Lishun
    Cao, Miao
    Zhong, Yong
    Yuan, Xin
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (07) : 9072 - 9089
  • [30] ShiftFormer: Spatial-Temporal Shift Operation in Video Transformer
    Yang, Beiying
    Zhu, Guibo
    Ge, Guojing
    Luo, Jinzhao
    Wang, Jinqiao
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 1895 - 1900