UID2021: An Underwater Image Dataset for Evaluation of No-Reference Quality Assessment Metrics

被引:49
|
作者
Hou, Guojia [1 ]
Li, Yuxuan [1 ]
Yang, Huan [1 ]
Li, Kunqian [2 ]
Pan, Zhenkuan [1 ]
机构
[1] Qingdao Univ, Coll Comp Sci & Technol, 308 Ningxia Rd, Qingdao 266071, Peoples R China
[2] Ocean Univ China, Coll Engn, 238 Songling Rd, Qingdao 266100, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Underwater image; image quality assessment; benchmark dataset; image enhancement and restoration; mean opinion score; BLUR ASSESSMENT; ENHANCEMENT; DATABASE;
D O I
10.1145/3578584
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Achieving subjective and objective quality assessment of underwater images is of high significance in underwater visual perception and image/video processing. However, the development of underwater image quality assessment (UIQA) is limited for the lack of publicly available underwater image datasets with human subjective scores and reliable objective UIQA metrics. To address this issue, we establish a large-scale underwater image dataset, dubbed UID2021, for evaluating no-reference (NR) UIQA metrics. The constructed dataset contains 60 multiply degraded underwater images collected from various sources, covering six common underwater scenes (i.e., bluish scene, blue-green scene, greenish scene, hazy scene, low-light scene, and turbid scene), and their corresponding 900 quality improved versions are generated by employing 15 state-of-the-art underwater image enhancement and restoration algorithms. Mean opinion scores with 52 observers for each image of UID2021 are also obtained by using the pairwise comparison sorting method. Both in-air and underwater-specific NR IQA algorithms are tested on our constructed dataset to fairly compare their performance and analyze their strengths and weaknesses. Our proposed UID2021 dataset enables ones to evaluate NR UIQA algorithms comprehensively and paves the way for further research on UIQA. The dataset is available at https://github.com/Hou-Guojia/UID2021.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] A No-Reference Image Quality Comprehensive Assessment Method
    Fan, Yuan-Yuan
    Sang, Ying-Jun
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2021, 35 (04)
  • [32] No-Reference Quality Assessment for Image Sharpness and Noise
    Tang, Lijuan
    Min, Xiongkuo
    Jakhetiya, Vinit
    Gu, Ke
    Zhang, Xinfeng
    Yang, Shuai
    2016 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA), 2016,
  • [33] The Effect of Uncertainty on No-Reference Image Quality Assessment
    Raei, Mohammadreza
    Mansouri, Azadeh
    PROCEEDINGS OF THE 13TH IRANIAN/3RD INTERNATIONAL MACHINE VISION AND IMAGE PROCESSING CONFERENCE, MVIP, 2024, : 223 - 227
  • [34] NO-REFERENCE IMAGE QUALITY ASSESSMENT BASED ON FILTERING
    Lu, Fang-Fang
    Lu, Lu
    Wang, Zhen
    MATERIAL ENGINEERING AND MECHANICAL ENGINEERING (MEME2015), 2016, : 929 - 937
  • [35] No-reference image quality metrics for color domain modified images
    Khan, Muhammad Usman
    Luo, Ming Ronnier
    Tian, Dalin
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2022, 39 (06) : B65 - B77
  • [36] No-reference image quality assessment in curvelet domain
    Liu, Lixiong
    Dong, Hongping
    Huang, Hua
    Bovik, Alan C.
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2014, 29 (04) : 494 - 505
  • [37] No-Reference Image Quality Assessment in Spatial Domain
    Sun, Tao
    Zhu, Xingjie
    Pan, Jeng-Shyang
    Wen, Jiajun
    Meng, Fanqiang
    GENETIC AND EVOLUTIONARY COMPUTING, 2015, 329 : 381 - 388
  • [38] Analysis and Design of No-Reference Image Quality Assessment
    Tian, Yuan
    Zhu, Ming
    Wang, Ligong
    2008 INTERNATIONAL CONFERENCE ON MULTIMEDIA AND INFORMATION TECHNOLOGY, PROCEEDINGS, 2008, : 349 - +
  • [39] A Review on No-reference Quality Assessment for Blurred Image
    Chen J.
    Li S.-Y.
    Lin L.
    Wang M.
    Li Z.-Y.
    Zidonghua Xuebao/Acta Automatica Sinica, 2022, 48 (03): : 689 - 711
  • [40] No-Reference Image Quality Assessment in the Spatial Domain
    Mittal, Anish
    Moorthy, Anush Krishna
    Bovik, Alan Conrad
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (12) : 4695 - 4708