UID2021: An Underwater Image Dataset for Evaluation of No-Reference Quality Assessment Metrics

被引:49
|
作者
Hou, Guojia [1 ]
Li, Yuxuan [1 ]
Yang, Huan [1 ]
Li, Kunqian [2 ]
Pan, Zhenkuan [1 ]
机构
[1] Qingdao Univ, Coll Comp Sci & Technol, 308 Ningxia Rd, Qingdao 266071, Peoples R China
[2] Ocean Univ China, Coll Engn, 238 Songling Rd, Qingdao 266100, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Underwater image; image quality assessment; benchmark dataset; image enhancement and restoration; mean opinion score; BLUR ASSESSMENT; ENHANCEMENT; DATABASE;
D O I
10.1145/3578584
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Achieving subjective and objective quality assessment of underwater images is of high significance in underwater visual perception and image/video processing. However, the development of underwater image quality assessment (UIQA) is limited for the lack of publicly available underwater image datasets with human subjective scores and reliable objective UIQA metrics. To address this issue, we establish a large-scale underwater image dataset, dubbed UID2021, for evaluating no-reference (NR) UIQA metrics. The constructed dataset contains 60 multiply degraded underwater images collected from various sources, covering six common underwater scenes (i.e., bluish scene, blue-green scene, greenish scene, hazy scene, low-light scene, and turbid scene), and their corresponding 900 quality improved versions are generated by employing 15 state-of-the-art underwater image enhancement and restoration algorithms. Mean opinion scores with 52 observers for each image of UID2021 are also obtained by using the pairwise comparison sorting method. Both in-air and underwater-specific NR IQA algorithms are tested on our constructed dataset to fairly compare their performance and analyze their strengths and weaknesses. Our proposed UID2021 dataset enables ones to evaluate NR UIQA algorithms comprehensively and paves the way for further research on UIQA. The dataset is available at https://github.com/Hou-Guojia/UID2021.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Combined No-Reference Image Quality Metrics for Visual Quality Assessment Optimized for Remote Sensing Images
    Rubel, Andrii
    Ieremeiev, Oleg
    Lukin, Vladimir
    Fastowicz, Jaroslaw
    Okarma, Krzysztof
    APPLIED SCIENCES-BASEL, 2022, 12 (04):
  • [22] A Comparative Study on No-Reference Video Quality Assessment Metrics
    Zerman, Emin
    Akar, Gozde Bozdagi
    Konuk, Baris
    Yilmaz, Gokce Nur
    2014 22ND SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2014, : 1774 - 1777
  • [23] A No-Reference Video Quality Assessment Model for Underwater Networks
    Moreno-Roldan, Jose-Miguel
    Poncela, Javier
    Otero, Pablo
    Bovik, Alan C.
    IEEE JOURNAL OF OCEANIC ENGINEERING, 2020, 45 (01) : 342 - 346
  • [24] Evaluation of No-reference quality metrics for Ultrasound liver images
    Outtas, Meriem
    Zhang, Lu
    Deforges, Olivier
    Hamidouche, Wassim
    Serir, Amina
    2018 TENTH INTERNATIONAL CONFERENCE ON QUALITY OF MULTIMEDIA EXPERIENCE (QOMEX), 2018, : 60 - 62
  • [25] An image response framework for no-reference image quality assessment
    Sun, Tongfeng
    Ding, Shifei
    Xu, Xinzheng
    COMPUTERS & ELECTRICAL ENGINEERING, 2018, 70 : 764 - 776
  • [26] Performance Evaluation of No-Reference Image Quality Metrics for Visible Wavelength Iris Biometric Images
    Liu, Xinwei
    Charrier, Christophe
    Pedersen, Marius
    Bours, Patrick
    2018 26TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2018, : 1437 - 1441
  • [27] No-Reference Image Quality Assessment for Facial Images
    Bhattacharjee, Debalina
    Prakash, Surya
    Gupta, Phalguni
    ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS: WITH ASPECTS OF ARTIFICIAL INTELLIGENCE, 2012, 6839 : 594 - 601
  • [28] No-Reference Image Quality Assessment Based on HVS
    Fu, Yan
    Wang, Shengchun
    2016 INTERNATIONAL SYMPOSIUM ON COMPUTER, CONSUMER AND CONTROL (IS3C), 2016, : 1093 - 1096
  • [29] No-reference image quality metrics for color domain modified images
    Khan, Muhammad Usman
    Luo, Ming Ronnier
    Tian, Dalin
    Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2022, 39 (06):
  • [30] No-reference visual quality assessment for image inpainting
    Voronin, V. V.
    Frantc, V. A.
    Marchuk, V. I.
    Sherstobitov, A. I.
    Egiazarian, K.
    IMAGE PROCESSING: ALGORITHMS AND SYSTEMS XIII, 2015, 9399