An expandable 36-channel neural recording ASIC with modular digital pixel design technique

被引:3
|
作者
Wang, Quan [1 ,2 ]
Wang, Gang [3 ]
You, Changhua [4 ]
Zhang, Xuan [5 ]
Liu, Daoyin [6 ]
Zeng, Huanhuan [6 ]
Xue, Ning [4 ]
Yao, Lei [6 ]
Li, Tie [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Sci & Technol Microsyst Lab, Shanghai 200050, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Shanghai Univ, Sch Microelect, Shanghai 200444, Peoples R China
[4] Chinese Acad Sci, Aerosp Informat Res Inst AIR, State Key Lab Transducer Technol, Beijing 100190, Peoples R China
[5] Shanghai Mtrix Technol Co Ltd, Shanghai 201800, Peoples R China
[6] Lingang Lab, Shanghai 200031, Peoples R China
基金
国家重点研发计划;
关键词
analogue integrated circuits; biomedical electronics; CMOS analogue integrated circuits; neural chips;
D O I
10.1049/ell2.12765
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents the design and implementation of an expandable neural recording ASIC for multiple-channel neural recording applications. The ASIC consists of 36 modular digital pixels (MDPs) and a global digital controller (GDC) circuit. Each MDP has an analog frontend (AFE) circuit, a 12-bit successive approximation register ADC (SAR ADC), and a local digital controller (LDC) circuit. It achieves 5.9-mu V input referred noise (IRN), 10.8-effective number of bits (ENOB), 37.8-mu W power consumption, and 0.095 mm(2) area per channel. The ASIC is implemented in commercial SMIC 0.18-mu m CMOS process and validated by in-vivo experiment on a lab mouse with a 36-channel silicon-based neural probe.
引用
收藏
页数:3
相关论文
共 29 条
  • [21] Design and fabrication of novel multi-channel floating neural probes for intracortical chronic recording
    Schander, A.
    Stemmann, H.
    Tolstosheeva, E.
    Roese, R.
    Biefeld, V.
    Kempen, L.
    Kreiter, A. K.
    Lang, W.
    SENSORS AND ACTUATORS A-PHYSICAL, 2016, 247 : 125 - 135
  • [22] System-Level Design of a 64-Channel Low Power Neural Spike Recording Sensor
    Delgado-Restituto, Manuel
    Rodriguez-Perez, Alberto
    Darie, Angela
    Soto-Sanchez, Cristina
    Fernandez-Jover, Eduardo
    Rodriguez-Vazquez, Angel
    IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2017, 11 (02) : 420 - 433
  • [23] Modular 128-Channel Δ-ΔΣ Analog Front-End Architecture Using Spectrum Equalization Scheme for 1024-Channel 3-D Neural Recording Microsystems
    Park, Sung-Yun
    Cho, Jihyun
    Na, Kyounghwan
    Yoon, Euisik
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2018, 53 (02) : 501 - 514
  • [24] A 515 nW, 0-18 dB Programmable Gain Analog-to-Digital Converter for In-Channel Neural Recording Interfaces
    Rodriguez-Perez, Alberto
    Delgado-Restituto, Manuel
    Medeiro, Fernando
    IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2014, 8 (03) : 358 - 370
  • [25] Toward 1024-Channel Parallel Neural Recording: Modular Δ-ΔΣ Analog Front-End Architecture with 4.84fJ/C-s.mm2 Energy-Area Product
    Park, Sung-Yun
    Cho, Jihyun
    Na, Kyounghwan
    Yoon, Euisik
    2015 SYMPOSIUM ON VLSI CIRCUITS (VLSI CIRCUITS), 2015,
  • [26] Sub-μVrms-Noise Sub-μW/Channel ADC-Direct Neural Recording With 200-mV/ms Transient Recovery Through Predictive Digital Autoranging
    Kim, Chul
    Joshi, Siddharth
    Courellis, Hristos
    Wang, Jun
    Miller, Cory
    Cauwenberghs, Gert
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2018, 53 (11) : 3101 - 3110
  • [27] A 16-Channel Neural Signal Recording IC Achieving a 4-to-90-Hz Tunable High-Pass Cutoff Frequency based on a PVT-Insensitive Pseudo-Resistance Technique
    Chu, Ruoyu
    Li, Jiahe
    Lyu, Hongming
    2024 INTERNATIONAL VLSI SYMPOSIUM ON TECHNOLOGY, SYSTEMS AND APPLICATIONS, VLSI TSA, 2024,
  • [28] Design of a 1.8-μVrms IRN 180-dB CMRR configurable low-noise 6-channel analog front-end for neural recording systems on 180nm CMOS process
    Le, Duc-Hung
    Pham, The-Hung
    IEICE ELECTRONICS EXPRESS, 2022, 20 (13):
  • [29] Design of a 1.8-μ Vrms IRN 180-dB CMRR configurable low-noise 6-channel analog front-end for neural recording systems on 180nm CMOS process
    Duc-Hung Le
    The-Hung Pham
    IEICE ELECTRONICS EXPRESS, 2023, 20 (13):