A posteriori error estimates for the time-dependent Navier-Stokes system coupled with the convection-diffusion-reaction equation

被引:0
|
作者
Dakroub, Jad [1 ]
Faddoul, Joanna [2 ,3 ]
Omnes, Pascal [3 ,4 ]
Sayah, Toni [2 ]
机构
[1] Univ St Joseph Beyrouth, Fac Ingenieurs, Beirut, Lebanon
[2] Univ St Joseph, Unite Rech Math & Modelisat, Lab Math & Applicat, CAR,Fac Sci, BP 11-514 Riad El Solh, Beirut 11072050, Lebanon
[3] Univ Sorbonne Paris Nord, LAGA, CNRS UMR 7539, Inst Galilee, 99 Ave JB Clement, F-93430 Villetaneuse, France
[4] Univ Paris Saclay, CEA, Serv Thermohydraul & Mecan Fluides, F-91191 Gif Sur Yvette, France
关键词
A posteriori error estimation; Navier-Stokes problem; Convection-diffusion-reaction equation; Finite element method; Adaptive methods; DISCRETIZATION;
D O I
10.1007/s10444-023-10066-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the a posteriori error estimates for the time dependent Navier-Stokes system coupled with the convection-diffusion-reaction equation. The problem is discretized in time using the implicit Euler method and in space using the finite element method. We establish a posteriori error estimates with two types of computable error indicators, the first one linked to the space discretization and the second one to the time discretization. Finally, numerical investigations are performed and presented.
引用
收藏
页数:60
相关论文
共 50 条
  • [1] A posteriori error estimates for the time-dependent Navier-Stokes system coupled with the convection-diffusion-reaction equation
    Jad Dakroub
    Joanna Faddoul
    Pascal Omnes
    Toni Sayah
    Advances in Computational Mathematics, 2023, 49
  • [2] A posteriori error estimates for the time-dependent convection-diffusion-reaction equation coupled with the Darcy system
    Nancy Chalhoub
    Pascal Omnes
    Toni Sayah
    Rebecca El Zahlaniyeh
    Numerical Algorithms, 2022, 89 : 1247 - 1286
  • [3] A posteriori error estimates for the time-dependent convection-diffusion-reaction equation coupled with the Darcy system
    Chalhoub, Nancy
    Omnes, Pascal
    Sayah, Toni
    El Zahlaniyeh, Rebecca
    NUMERICAL ALGORITHMS, 2022, 89 (03) : 1247 - 1286
  • [4] A posteriori error estimates of finite element method for the time-dependent Navier-Stokes equations
    Zhang, Tong
    Li, ShiShun
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 315 : 13 - 26
  • [5] A POSTERIORI ERROR ESTIMATES FOR DARCY-FORCHHEIMER'S PROBLEM COUPLED WITH THE CONVECTION-DIFFUSION-REACTION EQUATION
    Triki, Faouzi
    Sayah, Toni
    Semaan, Georges
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2024, 21 (01) : 65 - 103
  • [6] A posteriori error analysis for solving the Navier-Stokes problem and convection-diffusion equation
    Agroum, Rahma
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34 (02) : 401 - 418
  • [7] Full discretization of time dependent convection-diffusion-reaction equation coupled with the Darcy system
    Chalhoub, Nancy
    Omnes, Pascal
    Sayah, Toni
    El Zahlaniyeh, Rebecca
    CALCOLO, 2019, 57 (01)
  • [8] On a posteriori error estimates for the stationary Navier-Stokes problem
    Repin S.
    Journal of Mathematical Sciences, 2008, 150 (1) : 1885 - 1889
  • [9] A POSTERIORI MODELING ERROR ESTIMATES FOR THE ASSUMPTION OF PERFECT INCOMPRESSIBILITY IN THE NAVIER-STOKES EQUATION
    Fischer, Julian
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (05) : 2178 - 2205
  • [10] A posteriori error estimation and error control for finite element approximations of the time-dependent Navier-Stokes equations
    Prudhomme, S
    Oden, JT
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 1999, 33 (04) : 247 - 262