HRU-Net: High-Resolution Remote Sensing Image Road Extraction Based on Multi-Scale Fusion

被引:2
|
作者
Yin, Anchao [1 ]
Ren, Chao [1 ]
Yan, Zhiheng [1 ]
Xue, Xiaoqin [1 ]
Yue, Weiting [1 ]
Wei, Zhenkui [1 ]
Liang, Jieyu [1 ]
Zhang, Xudong [1 ]
Lin, Xiaoqi [1 ]
机构
[1] Guilin Univ Technol, Coll Geomat & Geoinformat, Guilin 541004, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 14期
基金
中国国家自然科学基金;
关键词
high-resolution remote sensing images; road extraction; shadow occlusion; spectral confusion; multi-scale fusion; NETWORK;
D O I
10.3390/app13148237
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Road extraction from high-resolution satellite images has become a significant focus in the field of remote sensing image analysis. However, factors such as shadow occlusion and spectral confusion hinder the accuracy and consistency of road extraction in satellite images. To overcome these challenges, this paper presents a multi-scale fusion-based road extraction framework, HRU-Net, which exploits the various scales and resolutions of image features generated during the encoding and decoding processes. First, during the encoding phase, we develop a multi-scale feature fusion module with upsampling capabilities (UMR module) to capture fine details, enhancing shadowed areas and road boundaries. Next, in the decoding phase, we design a multi-feature fusion module (MPF module) to obtain multi-scale spatial information, enabling better differentiation between roads and objects with similar spectral characteristics. The network simultaneously integrates multi-scale feature information during the downsampling process, producing high-resolution feature maps through progressive cross-layer connections, thereby enabling more effective high-resolution prediction tasks. We conduct comparative experiments and quantitative evaluations of the proposed HRU-Net framework against existing algorithms (U-Net, ResNet, DeepLabV3, ResUnet, HRNet) using the Massachusetts Road Dataset. On this basis, this paper selects three network models (U-Net, HRNet, and HRU-Net) to conduct comparative experiments and quantitative evaluations on the DeepGlobe Road Dataset. The experimental results demonstrate that the HRU-Net framework outperforms its counterparts in terms of accuracy and mean intersection over union. In summary, the HRU-Net model proposed in this paper skillfully exploits information from different resolution feature maps, effectively addressing the challenges of discontinuous road extraction and reduced accuracy caused by shadow occlusion and spectral confusion factors. In complex satellite image scenarios, the model accurately extracts comprehensive road regions.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Multi-Scale and Multi-Network Deep Feature Fusion for Discriminative Scene Classification of High-Resolution Remote Sensing Images
    Yuan, Baohua
    Sehra, Sukhjit Singh
    Chiu, Bernard
    REMOTE SENSING, 2024, 16 (21)
  • [42] Change Detection for High-Resolution Remote Sensing Images Based on a Multi-Scale Attention Siamese Network
    Li, Jiankang
    Zhu, Shanyou
    Gao, Yiyao
    Zhang, Guixin
    Xu, Yongming
    REMOTE SENSING, 2022, 14 (14)
  • [43] Road Extraction from Multi-source High-resolution Remote Sensing Image Using Convolutional Neural Network
    Zhang, Yun
    Xia, Wei
    Zhang, Yu-Ze
    Sun, Shi-Kai
    Sang, Ling-Zhi
    2018 INTERNATIONAL CONFERENCE ON AUDIO, LANGUAGE AND IMAGE PROCESSING (ICALIP), 2018, : 201 - 204
  • [44] Densely Based Multi-Scale and Multi-Modal Fully Convolutional Networks for High-Resolution Remote-Sensing Image Semantic Segmentation
    Peng, Cheng
    Li, Yangyang
    Jiao, Licheng
    Chen, Yanqiao
    Shang, Ronghua
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (08) : 2612 - 2626
  • [45] Remote Sensing Image Change Detection on Multi-Scale MRF Fusion
    Wang, W. X.
    Yu, Tianchao
    REMOTE SENSING AND MODELING OF ECOSYSTEMS FOR SUSTAINABILITY VIII, 2011, 8156
  • [46] High-Resolution Image Inpainting Based on Multi-Scale Neural Network
    Sun, Tingzhu
    Fang, Weidong
    Chen, Wei
    Yao, Yanxin
    Bi, Fangming
    Wu, Baolei
    ELECTRONICS, 2019, 8 (11)
  • [47] Narrow road extraction from high-resolution remote sensing images: SWGE-Net and MSIF-Net
    Zhao, Zhebin
    Chen, Wu
    Jiang, San
    Li, Yaxin
    Wang, Jingxian
    GEO-SPATIAL INFORMATION SCIENCE, 2024,
  • [48] Urban building extraction from high-resolution remote sensing imagery based on multi-scale recurrent conditional generative adversarial network
    Wang, Zhen
    Xu, Nan
    Wang, Buhong
    Liu, Yaohui
    Zhang, Shanwen
    GISCIENCE & REMOTE SENSING, 2022, 59 (01) : 861 - 884
  • [49] ROAD CENTERLINES EXTRACTION FROM HIGH RESOLUTION REMOTE SENSING IMAGE
    Sun, Shikai
    Xia, Wei
    Zhang, Bingqi
    Zhang, Ying
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 3931 - 3934
  • [50] Road Extraction from High-resolution Remote Sensing Images Based on Synthetical Characteristics
    Chen, Yongsheng
    Hong, Zhijia
    He, Qun
    Ma, Hongbin
    MEASUREMENT TECHNOLOGY AND ENGINEERING RESEARCHES IN INDUSTRY, PTS 1-3, 2013, 333-335 : 828 - 831