HRU-Net: High-Resolution Remote Sensing Image Road Extraction Based on Multi-Scale Fusion

被引:2
|
作者
Yin, Anchao [1 ]
Ren, Chao [1 ]
Yan, Zhiheng [1 ]
Xue, Xiaoqin [1 ]
Yue, Weiting [1 ]
Wei, Zhenkui [1 ]
Liang, Jieyu [1 ]
Zhang, Xudong [1 ]
Lin, Xiaoqi [1 ]
机构
[1] Guilin Univ Technol, Coll Geomat & Geoinformat, Guilin 541004, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 14期
基金
中国国家自然科学基金;
关键词
high-resolution remote sensing images; road extraction; shadow occlusion; spectral confusion; multi-scale fusion; NETWORK;
D O I
10.3390/app13148237
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Road extraction from high-resolution satellite images has become a significant focus in the field of remote sensing image analysis. However, factors such as shadow occlusion and spectral confusion hinder the accuracy and consistency of road extraction in satellite images. To overcome these challenges, this paper presents a multi-scale fusion-based road extraction framework, HRU-Net, which exploits the various scales and resolutions of image features generated during the encoding and decoding processes. First, during the encoding phase, we develop a multi-scale feature fusion module with upsampling capabilities (UMR module) to capture fine details, enhancing shadowed areas and road boundaries. Next, in the decoding phase, we design a multi-feature fusion module (MPF module) to obtain multi-scale spatial information, enabling better differentiation between roads and objects with similar spectral characteristics. The network simultaneously integrates multi-scale feature information during the downsampling process, producing high-resolution feature maps through progressive cross-layer connections, thereby enabling more effective high-resolution prediction tasks. We conduct comparative experiments and quantitative evaluations of the proposed HRU-Net framework against existing algorithms (U-Net, ResNet, DeepLabV3, ResUnet, HRNet) using the Massachusetts Road Dataset. On this basis, this paper selects three network models (U-Net, HRNet, and HRU-Net) to conduct comparative experiments and quantitative evaluations on the DeepGlobe Road Dataset. The experimental results demonstrate that the HRU-Net framework outperforms its counterparts in terms of accuracy and mean intersection over union. In summary, the HRU-Net model proposed in this paper skillfully exploits information from different resolution feature maps, effectively addressing the challenges of discontinuous road extraction and reduced accuracy caused by shadow occlusion and spectral confusion factors. In complex satellite image scenarios, the model accurately extracts comprehensive road regions.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Information Extraction from High-Resolution Remote Sensing Images Based on Multi-Scale Segmentation and Case-Based Reasoning
    Xu, Jun
    Li, Jiansong
    Peng, Hao
    He, Yanjun
    Wu, Bin
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2022, 88 (03): : 199 - 206
  • [22] Application of Multi-scale Segmentation Algorithms for High Resolution Remote Sensing Image
    Zhou, Tingting
    Gu, Lingjia
    Ren, Ruizhi
    APPLICATIONS OF DIGITAL IMAGE PROCESSING XL, 2017, 10396
  • [23] Research on a Multi-Scale Segmentation Algorithm Based on High Resolution Satellite Remote Sensing Image
    Zhang, Dehui
    Yang, Yong
    Song, Kai
    Zhang, Deyu
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON INTELLIGENT CONTROL AND COMPUTER APPLICATION, 2016, 30 : 414 - 416
  • [24] A mean shift multi-scale segmentation for high-resolution remote sensing images
    Shen, Zhanfeng
    Luo, Jiancheng
    Hu, Xiaodong
    Sun, Weigang
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/ Geomatics and Information Science of Wuhan University, 2010, 35 (03): : 313 - 316
  • [25] Multi-scale Remote Sensing Image Classification Based on Weighted Feature Fusion
    Cheng Yinzhu
    Liu Song
    Wang Nan
    Shi Yuetian
    Zhang Geng
    ACTA PHOTONICA SINICA, 2023, 52 (11)
  • [26] Improved Remote Sensing Image Classification Based on Multi-Scale Feature Fusion
    Zhang, Chengming
    Chen, Yan
    Yang, Xiaoxia
    Gao, Shuai
    Li, Feng
    Kong, Ailing
    Zu, Dawei
    Sun, Li
    REMOTE SENSING, 2020, 12 (02)
  • [27] High-Resolution Remote Sensing Image Building Extraction based on PRCUnet
    Xu J.
    Liu W.
    Shan H.
    Shi J.
    Li E.
    Zhang L.
    Li X.
    Liu, Wei (liuw@jsnu.edu.cn), 1838, Science Press (23): : 1838 - 1849
  • [28] The research of road extraction from high-resolution remote sensing image based on optimized watershed algorithm
    Cai, Hongyue
    Yao, Guoqing
    PROCEEDINGS OF THE 2013 THE INTERNATIONAL CONFERENCE ON REMOTE SENSING, ENVIRONMENT AND TRANSPORTATION ENGINEERING (RSETE 2013), 2013, 31 : 217 - 220
  • [29] HRU-Net: A high-resolution convolutional neural network for esophageal cancer radiotherapy target segmentation
    Jian, Muwei
    Tao, Chen
    Wu, Ronghua
    Zhang, Haoran
    Li, Xiaoguang
    Wang, Rui
    Wang, Yanlei
    Peng, Lizhi
    Zhu, Jian
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2024, 250
  • [30] IR Remote Sensing Image Registration Based on Multi-scale Feature Extraction
    Kong, Jun
    Jiang, Min
    Kong, Jun
    Kong, Jun
    Sun, Yi-Ning
    PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2014, : 1352 - 1358