Copula-based pairwise estimator for quantile regression with hierarchical missing data

被引:0
|
作者
Verhasselt, Anneleen [1 ]
Florez, Alvaro J. [1 ,2 ,5 ]
Molenberghs, Geert [1 ,3 ]
Van Keilegom, Ingrid [4 ]
机构
[1] Univ Hasselt, Data Sci Inst, I BioStat, Diepenbeek, Belgium
[2] Univ Valle, Sch Stat, Cali, Colombia
[3] Katholieke Univ Leuven, I Biostat, Leuven, Belgium
[4] Katholieke Univ Leuven, ORSTAT, Leuven, Belgium
[5] Univ Valle, Fac Engn, Sch Stat, Edificio E56,Ciudad Univ-Melendez,Calle 13 100-00, Cali, Colombia
关键词
asymmetric Laplace distribution; copulas; inverse probability weighting; quantile regression; longitudinal data; missing data; pairwise estimator; LIKELIHOOD-ESTIMATION; MEDIAN REGRESSION; LONGITUDINAL DATA; INFERENCE; MODELS;
D O I
10.1177/1471082X231225806
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Quantile regression can be a helpful technique for analysing clustered (such as longitudinal) data. It can characterize the change in response over time without making distributional assumptions and is robust to outliers in the response. A quantile regression model using a copula-based multivariate asymmetric Laplace distribution for addressing correlation due to clustering is introduced. Furthermore, we propose a pairwise estimator for the parameters of the model. Since it is based on pseudo-likelihood, it needs to be modified to avoid bias in presence of missingness. Therefore, we enhance the model with inverse probability weighting. In this way, our proposal is unbiased under the missing at random assumption. Based on simulations, the estimator is efficient and computationally fast. Finally, the methodology is illustrated using a study in ophthalmology.
引用
收藏
页码:129 / 149
页数:21
相关论文
共 50 条
  • [31] Copula-based link functions in binary regression models
    M. Mesfioui
    T. Bouezmarni
    M. Belalia
    Statistical Papers, 2023, 64 : 557 - 585
  • [32] Semiparametric Conditional Quantile Estimation Through Copula-Based Multivariate Models
    Noh, Hohsuk
    El Ghouch, Anouar
    Van Keilegom, Ingrid
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2015, 33 (02) : 167 - 178
  • [33] A quantile regression estimator for interval-censored data
    Frumento, Paolo
    INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2023, 19 (01): : 81 - 96
  • [34] Copula-based semiparametric regression method for bivariate data under general interval censoring
    Sun, Tao
    Ding, Ying
    BIOSTATISTICS, 2021, 22 (02) : 315 - 330
  • [35] Copula-based markov chain logistic regression modeling on binomial time series data
    Novianti, Pepi
    Gunardi
    Rosadi, Dedi
    METHODSX, 2024, 12
  • [36] A new copula regression model for hierarchical data
    Akpo, Talagbe Gabin
    Rivest, Louis-Paul
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2025, 53 (01):
  • [37] Hierarchical copula regression models for areal data
    Musgrove, D. R.
    Hughes, J.
    Eberly, L. E.
    SPATIAL STATISTICS, 2016, 17 : 38 - 49
  • [38] Copula-based mixed models for bivariate rainfall data: an empirical study in regression perspective
    Francesco Serinaldi
    Stochastic Environmental Research and Risk Assessment, 2009, 23 : 677 - 693
  • [39] Copula-based mixed models for bivariate rainfall data: an empirical study in regression perspective
    Francesco Serinaldi
    Stochastic Environmental Research and Risk Assessment, 2009, 23 (5) : 695 - 696
  • [40] Spatial Interpolation of Missing Annual Average Daily Traffic Data Using Copula-Based Model
    Ma, Xiaolei
    Ding, Chuan
    Wang, Yunpeng
    Luan, Sen
    Liu, Haode
    IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE, 2019, 11 (03) : 158 - 170