Copula-based pairwise estimator for quantile regression with hierarchical missing data

被引:0
|
作者
Verhasselt, Anneleen [1 ]
Florez, Alvaro J. [1 ,2 ,5 ]
Molenberghs, Geert [1 ,3 ]
Van Keilegom, Ingrid [4 ]
机构
[1] Univ Hasselt, Data Sci Inst, I BioStat, Diepenbeek, Belgium
[2] Univ Valle, Sch Stat, Cali, Colombia
[3] Katholieke Univ Leuven, I Biostat, Leuven, Belgium
[4] Katholieke Univ Leuven, ORSTAT, Leuven, Belgium
[5] Univ Valle, Fac Engn, Sch Stat, Edificio E56,Ciudad Univ-Melendez,Calle 13 100-00, Cali, Colombia
关键词
asymmetric Laplace distribution; copulas; inverse probability weighting; quantile regression; longitudinal data; missing data; pairwise estimator; LIKELIHOOD-ESTIMATION; MEDIAN REGRESSION; LONGITUDINAL DATA; INFERENCE; MODELS;
D O I
10.1177/1471082X231225806
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Quantile regression can be a helpful technique for analysing clustered (such as longitudinal) data. It can characterize the change in response over time without making distributional assumptions and is robust to outliers in the response. A quantile regression model using a copula-based multivariate asymmetric Laplace distribution for addressing correlation due to clustering is introduced. Furthermore, we propose a pairwise estimator for the parameters of the model. Since it is based on pseudo-likelihood, it needs to be modified to avoid bias in presence of missingness. Therefore, we enhance the model with inverse probability weighting. In this way, our proposal is unbiased under the missing at random assumption. Based on simulations, the estimator is efficient and computationally fast. Finally, the methodology is illustrated using a study in ophthalmology.
引用
收藏
页码:129 / 149
页数:21
相关论文
共 50 条
  • [21] A semiparametric copula-based estimation of the regression function for right-censored data
    Bouezmarni, Taoufik
    Rabhi, Yassir
    Fontaine, Charles
    STATISTICS, 2020, 54 (01) : 46 - 58
  • [22] Copula-based Cox Regression to Modelling Bivariate Time-to-Event Data
    Mahara, Duhania O.
    Purnami, Santi W.
    Andari, Shofi
    2024 16TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING, ICMLC 2024, 2024, : 658 - 664
  • [23] Semiparametric copula quantile regression for complete or censored data
    De Backer, Mickael
    El Ghouch, Anouar
    Van Keilegom, Ingrid
    ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (01): : 1660 - 1698
  • [24] A C-Vine Copula-Based Quantile Regression Method for Streamflow Forecasting in Xiangxi River Basin, China
    Li, Huawei
    Huang, Guohe
    Li, Yongping
    Sun, Jie
    Gao, Pangpang
    SUSTAINABILITY, 2021, 13 (09)
  • [25] Comparison of Trivariate Copula-Based Conditional Quantile Regression Versus Machine Learning Methods for Estimating Copper Recovery
    Hernandez, Heber
    Diaz-Viera, Martin Alberto
    Alberdi, Elisabete
    Goti, Aitor
    MATHEMATICS, 2025, 13 (04)
  • [26] Copula and composite quantile regression-based estimating equations for longitudinal data
    Wang, Kangning
    Shan, Wen
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2021, 73 (03) : 441 - 455
  • [27] Parametric and semiparametric approaches for copula-based regression estimation
    Ali, Alam
    Pathak, Ashok Kumar
    Arshad, Mohd
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2024, 53 (04): : 1141 - 1157
  • [28] Gaussian copula based composite quantile regression in semivarying models with longitudinal data
    Wang, Kangning
    Jin, Haotian
    Sun, Xiaofei
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (04) : 1110 - 1132
  • [29] Copula and composite quantile regression-based estimating equations for longitudinal data
    Kangning Wang
    Wen Shan
    Annals of the Institute of Statistical Mathematics, 2021, 73 : 441 - 455
  • [30] Copula-based link functions in binary regression models
    Mesfioui, M.
    Bouezmarni, T.
    Belalia, M.
    STATISTICAL PAPERS, 2023, 64 (02) : 557 - 585