GLOBAL STRONG/CLASSICAL SOLUTIONS TO THE ONE-DIMENSIONAL COMPRESSIBLE NAVIER-STOKES-ALLEN-CAHN SYSTEM WITH

被引:2
|
作者
Chen, Zhengzheng [1 ]
Duan, Ran [2 ]
He, Lin [3 ]
Li, Yeping [4 ]
机构
[1] Anhui Univ, Ctr Pure Math, Sch Math Sci, Hefei 230601, Peoples R China
[2] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
[3] Sichuan Univ, Coll Math, Chengdu 610064, Peoples R China
[4] Nantong Univ, Sch Sci, Nantong 226019, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Compressible Navier-Stokes-Allen-Cahn system; Strong; classical so-; lutions; Density-dependent viscosity; Large initial data; DENSITY-DEPENDENT VISCOSITY; RAREFACTION WAVES; WEAK SOLUTIONS; SMOOTH SOLUTIONS; EQUATIONS; EXISTENCE; STABILITY; FLOWS; GAS;
D O I
10.3934/dcdsb.2023127
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. This paper is concerned with a one-dimensional isentropic compressible Navier-Stokes-Allen-Cahn system with density-dependent viscosity, which models the motion of a mixture of two viscous compressible fluids. The case when the pressure p(& rho;) = & rho;-r, the viscosity & nu;(& rho;, & chi;) = & rho;& alpha;, the interface thickness & delta;(& rho;) = & rho;l3 and the relaxation time function a(& rho;, & chi;, & chi;y) = & rho;A is considered, where & rho; and & chi; are the density and the phase variable, respectively, and & gamma;, & alpha;, & beta;, & lambda; & ISIN; R are parameters. Under some suitable assumptions on the parameters & gamma;, & alpha;, & beta;, & lambda; and the initial data, we prove the global existence and large-time behavior of nonvacuum strong and classical solutions to its Cauchy problem with large initial data. This appears to be the first global existence result on the Cauchy problem of the compressible Navier-Stokes-Allen-Cahn system with density-dependent viscosity and large data.
引用
收藏
页码:1146 / 1186
页数:41
相关论文
共 50 条
  • [41] GLOBAL STRONG SOLUTIONS OF THE NONISENTROPIC NAVIER-STOKES/ALLEN-CAHN SYSTEM WITH DENSITY-DEPENDENT VISCOSITY
    Dai, Weilun
    Ding, Shijin
    Li, Yinghua
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2024,
  • [42] Strong solutions for an incompressible Navier-Stokes/Allen-Cahn system with different densities
    Li, Yinghua
    Huang, Mingxia
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (03):
  • [43] Time-Periodic Solution to the Compressible Navier–Stokes/Allen–Cahn System
    Chang Ming SONG
    Jian Lin ZHANG
    Yuan Yuan WANG
    Acta Mathematica Sinica,English Series, 2020, (04) : 419 - 442
  • [44] Time-Periodic Solution to the Compressible Navier–Stokes/Allen–Cahn System
    Chang Ming SONG
    Jian Lin ZHANG
    Yuan Yuan WANG
    Acta Mathematica Sinica, 2020, 36 (04) : 419 - 442
  • [45] Global well-posedness of one-dimensional compressible Navier-Stokes-Vlasov system
    Li, Hai-Liang
    Shou, Ling-Yun
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 280 : 841 - 890
  • [46] Strong solutions for 1D compressible Navier-Stokes/Allen-Cahn system with phase variable dependent viscosity
    Yan, Yuanxiang
    Ding, Shijin
    Li, Yinghua
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 326 : 1 - 48
  • [47] Global well-posedness and L 2 decay estimate of smooth solutions for the 3-D incompressible Navier-Stokes-Allen-Cahn system
    Huo, Wenwen
    Teng, Kaimin
    Zhang, Chao
    ASYMPTOTIC ANALYSIS, 2024, 139 (1-2) : 89 - 109
  • [48] Global existence of strong solutions of Navier-Stokes equations with non-Newtonian potential for one-dimensional isentropic compressible fluids
    Liu Hongzhi
    Yuan Hongjun
    Qiao Jiezeng
    Li Fanpei
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) : 5876 - 5891
  • [49] GLOBAL EXISTENCE OF STRONG SOLUTIONS OF NAVIER-STOKES EQUATIONS WITH NON-NEWTONIAN POTENTIAL FOR ONE-DIMENSIONAL ISENTROPIC COMPRESSIBLE FLUIDS
    袁洪君
    柳洪志
    桥节增
    李梵蓓
    ActaMathematicaScientia, 2012, 32 (04) : 1467 - 1486
  • [50] GLOBAL EXISTENCE OF STRONG SOLUTIONS OF NAVIER-STOKES EQUATIONS WITH NON-NEWTONIAN POTENTIAL FOR ONE-DIMENSIONAL ISENTROPIC COMPRESSIBLE FLUIDS
    Yuan Hongjun
    Liu Hongzhi
    Qiao Jiezeng
    Li Fanpei
    ACTA MATHEMATICA SCIENTIA, 2012, 32 (04) : 1467 - 1486