GLOBAL STRONG/CLASSICAL SOLUTIONS TO THE ONE-DIMENSIONAL COMPRESSIBLE NAVIER-STOKES-ALLEN-CAHN SYSTEM WITH

被引:2
|
作者
Chen, Zhengzheng [1 ]
Duan, Ran [2 ]
He, Lin [3 ]
Li, Yeping [4 ]
机构
[1] Anhui Univ, Ctr Pure Math, Sch Math Sci, Hefei 230601, Peoples R China
[2] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
[3] Sichuan Univ, Coll Math, Chengdu 610064, Peoples R China
[4] Nantong Univ, Sch Sci, Nantong 226019, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Compressible Navier-Stokes-Allen-Cahn system; Strong; classical so-; lutions; Density-dependent viscosity; Large initial data; DENSITY-DEPENDENT VISCOSITY; RAREFACTION WAVES; WEAK SOLUTIONS; SMOOTH SOLUTIONS; EQUATIONS; EXISTENCE; STABILITY; FLOWS; GAS;
D O I
10.3934/dcdsb.2023127
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. This paper is concerned with a one-dimensional isentropic compressible Navier-Stokes-Allen-Cahn system with density-dependent viscosity, which models the motion of a mixture of two viscous compressible fluids. The case when the pressure p(& rho;) = & rho;-r, the viscosity & nu;(& rho;, & chi;) = & rho;& alpha;, the interface thickness & delta;(& rho;) = & rho;l3 and the relaxation time function a(& rho;, & chi;, & chi;y) = & rho;A is considered, where & rho; and & chi; are the density and the phase variable, respectively, and & gamma;, & alpha;, & beta;, & lambda; & ISIN; R are parameters. Under some suitable assumptions on the parameters & gamma;, & alpha;, & beta;, & lambda; and the initial data, we prove the global existence and large-time behavior of nonvacuum strong and classical solutions to its Cauchy problem with large initial data. This appears to be the first global existence result on the Cauchy problem of the compressible Navier-Stokes-Allen-Cahn system with density-dependent viscosity and large data.
引用
收藏
页码:1146 / 1186
页数:41
相关论文
共 50 条
  • [31] Global existence and optimal time decay rates of 3D non-isentropic compressible Navier-Stokes-Allen-Cahn system
    Chen, Yazhou
    Li, Hai-Liang
    Tang, Houzhi
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 334 : 157 - 193
  • [32] EXISTENCE OF SOLUTIONS FOR A NON-ISOTHERMAL NAVIER-STOKES-ALLEN-CAHN SYSTEM WITH THERMO-INDUCED COEFFICIENTS
    Lopes, Juliana Honda
    Planas, Gabriela
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 2022 (72)
  • [33] Numerical Analysis for a Non-isothermal Incompressible Navier-Stokes-Allen-Cahn System
    Rueda-Gomez, Diego A.
    Rueda-Fernandez, Elian E.
    Villamizar-Roa, elder J.
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2024, 26 (04)
  • [34] Spherically Symmetric Solutions for a Coupled Compressible Navier-Stokes/Allen-Cahn System
    Song Changming
    Wang Yuanyuan
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2018, 31 (04): : 374 - 384
  • [35] Global Weak Solutions for 1D Compressible Navier-Stokes/Allen-Cahn System with Vacuum
    Li, Yinghua
    Yan, Yuanxiang
    Ding, Shijin
    Chen, Gaoyang
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (01):
  • [36] Spectral analysis for travelling waves in compressible two-phase fluids of Navier-Stokes-Allen-Cahn type
    Kotschote, Matthias
    JOURNAL OF EVOLUTION EQUATIONS, 2017, 17 (01) : 359 - 385
  • [37] GLOBAL EXISTENCE OF SOLUTIONS FOR ONE-DIMENSIONAL COMPRESSIBLE NAVIER-STOKES EQUATIONS IN THE HALF SPACE
    王淑娟
    赵俊宁
    ActaMathematicaScientia, 2010, 30 (06) : 1889 - 1905
  • [38] GLOBAL EXISTENCE OF SOLUTIONS FOR ONE-DIMENSIONAL COMPRESSIBLE NAVIER-STOKES EQUATIONS IN THE HALF SPACE
    Wang Shujuan
    Zhao Junning
    ACTA MATHEMATICA SCIENTIA, 2010, 30 (06) : 1889 - 1905
  • [39] GLOBAL SOLUTIONS TO THE ONE-DIMENSIONAL COMPRESSIBLE NAVIER-STOKES-POISSON EQUATIONS WITH LARGE DATA
    Tan, Zhong
    Yang, Tong
    Zhao, Huijiang
    Zou, Qingyang
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2013, 45 (02) : 547 - 571
  • [40] Global existence of strong solutions of Navier–Stokes equations with non-Newtonian potential for one-dimensional isentropic compressible fluids
    Hongzhi Liu
    Hongjun Yuan
    Jiezeng Qiao
    Fanpei Li
    Zeitschrift für angewandte Mathematik und Physik, 2012, 63 : 865 - 878