Discrete-time nonlinear feedback linearization via physics-informed machine learning

被引:4
|
作者
Alvarez, Hector Vargas [1 ]
Fabiani, Gianluca [1 ,4 ]
Kazantzis, Nikolaos [2 ]
Siettos, Constantinos [3 ]
Kevrekidis, Ioannis G. [4 ,5 ,6 ]
机构
[1] Scuola Super Meridionale, Naples, Italy
[2] Worcester Polytech Inst, Dept Chem Engn, Worcester, MA USA
[3] Univ Napoli Federico II, Dipartimento Matemat & Applicaz Renato Caccioppoli, Naples, Italy
[4] Johns Hopkins Univ, Dept Chem & Biomol Engn, Baltimore, MD 21218 USA
[5] Johns Hopkins Univ, Dept Appl Math & Stat, Baltimore, MD USA
[6] Johns Hopkins Univ, Med Sch, Dept Urol, Baltimore, MD USA
关键词
Physics-informed machine learning; Feedback linearization; Nonlinear discrete time systems; Greedy training; NEURAL-NETWORKS; GEOMETRIC METHODS; ADAPTIVE-CONTROL; FUZZY CONTROL; STATE-SPACE; SYSTEMS; STABILIZATION; APPROXIMATE; STRATEGIES; IMMERSION;
D O I
10.1016/j.jcp.2023.112408
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a physics-informed machine learning (PIML) scheme for the feedback linearization of nonlinear discrete-time dynamical systems. The PIML finds the nonlinear transformation law, thus ensuring stability via pole placement, in one step. In order to facilitate convergence in the presence of steep gradients in the nonlinear transformation law, we address a greedy training procedure. We assess the performance of the proposed PIML approach via a benchmark nonlinear discrete map for which the feedback linearization transformation law can be derived analytically; the example is characterized by steep gradients, due to the presence of singularities, in the domain of interest. We show that the proposed PIML outperforms, in terms of numerical approximation accuracy, the traditional numerical implementation, which involves the construction -and the solution in terms of the coefficients of a power-series expansion-of a system of homological equations as well as the implementation of the PIML in the entire domain, thus highlighting the importance of continuation techniques in the training procedure of PIML schemes.(c) 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Probabilistic physics-informed machine learning for dynamic systems
    Subramanian, Abhinav
    Mahadevan, Sankaran
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 230
  • [32] Physics-Informed Extreme Learning Machine Lyapunov Functions
    Zhou, Ruikun
    Fitzsimmons, Maxwell
    Meng, Yiming
    Liu, Jun
    IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 1763 - 1768
  • [33] Predicting glass structure by physics-informed machine learning
    Bodker, Mikkel L.
    Bauchy, Mathieu
    Du, Tao
    Mauro, John C.
    Smedskjaer, Morten M.
    NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)
  • [34] Parsimony as the ultimate regularizer for physics-informed machine learning
    J. Nathan Kutz
    Steven L. Brunton
    Nonlinear Dynamics, 2022, 107 : 1801 - 1817
  • [35] Parsimony as the ultimate regularizer for physics-informed machine learning
    Kutz, J. Nathan
    Brunton, Steven L.
    NONLINEAR DYNAMICS, 2022, 107 (03) : 1801 - 1817
  • [36] Physics-Informed Machine Learning for Optical Modes in Composites
    Ghosh, Abantika
    Elhamod, Mohannad
    Bu, Jie
    Lee, Wei-Cheng
    Karpatne, Anuj
    Podolskiy, Viktor A.
    ADVANCED PHOTONICS RESEARCH, 2022, 3 (11):
  • [37] Predicting glass structure by physics-informed machine learning
    Mikkel L. Bødker
    Mathieu Bauchy
    Tao Du
    John C. Mauro
    Morten M. Smedskjaer
    npj Computational Materials, 8
  • [38] Physics-Informed Machine Learning for metal additive manufacturing
    Farrag, Abdelrahman
    Yang, Yuxin
    Cao, Nieqing
    Won, Daehan
    Jin, Yu
    PROGRESS IN ADDITIVE MANUFACTURING, 2025, 10 (01) : 171 - 185
  • [39] Physics-informed Spline Learning for Nonlinear Dynamics Discovery
    Sun, Fangzheng
    Liu, Yang
    Sun, Hao
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 2054 - 2061
  • [40] Physics-Informed Online Machine Learning and Predictive Control of Nonlinear Processes with Parameter Uncertainty
    Zheng, Yingzhe
    Wu, Zhe
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2023, 62 (06) : 2804 - 2818