Discrete-time nonlinear feedback linearization via physics-informed machine learning

被引:4
|
作者
Alvarez, Hector Vargas [1 ]
Fabiani, Gianluca [1 ,4 ]
Kazantzis, Nikolaos [2 ]
Siettos, Constantinos [3 ]
Kevrekidis, Ioannis G. [4 ,5 ,6 ]
机构
[1] Scuola Super Meridionale, Naples, Italy
[2] Worcester Polytech Inst, Dept Chem Engn, Worcester, MA USA
[3] Univ Napoli Federico II, Dipartimento Matemat & Applicaz Renato Caccioppoli, Naples, Italy
[4] Johns Hopkins Univ, Dept Chem & Biomol Engn, Baltimore, MD 21218 USA
[5] Johns Hopkins Univ, Dept Appl Math & Stat, Baltimore, MD USA
[6] Johns Hopkins Univ, Med Sch, Dept Urol, Baltimore, MD USA
关键词
Physics-informed machine learning; Feedback linearization; Nonlinear discrete time systems; Greedy training; NEURAL-NETWORKS; GEOMETRIC METHODS; ADAPTIVE-CONTROL; FUZZY CONTROL; STATE-SPACE; SYSTEMS; STABILIZATION; APPROXIMATE; STRATEGIES; IMMERSION;
D O I
10.1016/j.jcp.2023.112408
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a physics-informed machine learning (PIML) scheme for the feedback linearization of nonlinear discrete-time dynamical systems. The PIML finds the nonlinear transformation law, thus ensuring stability via pole placement, in one step. In order to facilitate convergence in the presence of steep gradients in the nonlinear transformation law, we address a greedy training procedure. We assess the performance of the proposed PIML approach via a benchmark nonlinear discrete map for which the feedback linearization transformation law can be derived analytically; the example is characterized by steep gradients, due to the presence of singularities, in the domain of interest. We show that the proposed PIML outperforms, in terms of numerical approximation accuracy, the traditional numerical implementation, which involves the construction -and the solution in terms of the coefficients of a power-series expansion-of a system of homological equations as well as the implementation of the PIML in the entire domain, thus highlighting the importance of continuation techniques in the training procedure of PIML schemes.(c) 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Physics-informed machine learning for modeling multidimensional dynamics
    Abbasi, Amirhassan
    Kambali, Prashant N.
    Shahidi, Parham
    Nataraj, C.
    NONLINEAR DYNAMICS, 2024, 112 (24) : 21565 - 21585
  • [22] Probabilistic and Physics-Informed Machine Learning for Predictive Maintenance with Time Series Data
    Vu, Phan-Anh
    Aldea, Emanuel
    Bouarroudj, Mounira
    Le Hegarat-Mascle, Sylvie
    2023 24TH INTERNATIONAL CONFERENCE ON THERMAL, MECHANICAL AND MULTI-PHYSICS SIMULATION AND EXPERIMENTS IN MICROELECTRONICS AND MICROSYSTEMS, EUROSIME, 2023,
  • [23] Physics-Informed Machine Learning for DRAM Error Modeling
    Baseman, Elisabeth
    DeBardeleben, Nathan
    Blanchard, Sean
    Moore, Juston
    Tkachenko, Olena
    Ferreira, Kurt
    Siddiqua, Taniya
    Sridharan, Vilas
    2018 IEEE INTERNATIONAL SYMPOSIUM ON DEFECT AND FAULT TOLERANCE IN VLSI AND NANOTECHNOLOGY SYSTEMS (DFT), 2018,
  • [24] The scaling of physics-informed machine learning with data and dimensions
    Miller S.T.
    Lindner J.F.
    Choudhary A.
    Sinha S.
    Ditto W.L.
    Chaos, Solitons and Fractals: X, 2020, 5
  • [25] Physics-informed Machine Learning for Modeling Turbulence in Supernovae
    Karpov, Platon I.
    Huang, Chengkun
    Sitdikov, Iskandar
    Fryer, Chris L.
    Woosley, Stan
    Pilania, Ghanshyam
    ASTROPHYSICAL JOURNAL, 2022, 940 (01):
  • [26] A Review of Physics-Informed Machine Learning in Fluid Mechanics
    Sharma, Pushan
    Chung, Wai Tong
    Akoush, Bassem
    Ihme, Matthias
    ENERGIES, 2023, 16 (05)
  • [27] Physics-informed machine learning for inorganic scintillator discovery
    Pilania, G.
    McClellan, K. J.
    Stanek, C. R.
    Uberuaga, B. P.
    JOURNAL OF CHEMICAL PHYSICS, 2018, 148 (24):
  • [28] Neural Oscillators for Generalization of Physics-Informed Machine Learning
    Kapoor, Taniya
    Chandra, Abhishek
    Tartakovsky, Daniel M.
    Wang, Hongrui
    Nunez, Alfredo
    Dollevoet, Rolf
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 12, 2024, : 13059 - 13067
  • [29] Physics-informed machine learning for programmable photonic circuits
    Teofilovic, Isidora
    Zibar, Darko
    Da Ros, Francesco
    MACHINE LEARNING IN PHOTONICS, 2024, 13017
  • [30] Physics-informed machine learning for moving load problems
    Kapoor, Taniya
    Wang, Hongrui
    Nunez, Alfredo
    Dollevoet, Rolf
    XII INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS, EURODYN 2023, 2024, 2647