Continuous pulse advances in the negative ion source NIO1

被引:1
|
作者
Barbisan, M. [1 ]
Agnello, R. [1 ,2 ]
Cavenago, M. [3 ]
Delogu, R. S. [1 ]
Pimazzoni, A. [1 ]
Balconi, L. [4 ]
Barbato, P. [1 ]
Baseggio, L. [1 ]
Castagni, A. [1 ,2 ,5 ]
Duteil, B. Pouradier [1 ,2 ]
Franchin, L. [1 ]
Laterza, B. [1 ]
Molon, F. [1 ]
Maniero, M. [1 ]
Migliorato, L. [1 ]
Milazzo, R. [1 ]
Passalacqua, G. [1 ]
Poggi, C. [1 ]
Ravarotto, D. [1 ]
Rizzieri, R. [1 ]
Romanato, L. [1 ]
Rossetto, F. [1 ]
Trevisan, L. [1 ]
Ugoletti, M. [1 ,3 ]
Zaniol, B. [1 ]
Zucchetti, S. [1 ]
机构
[1] Univ Padua, Consorzio RFX, CNR, ENEA,INFN,Acciaierie Venete SpA, Cso Stati Uniti 4, I-35127 Padua, Italy
[2] Swiss Plasma Ctr SPC, EPFL, CH-1015 Lausanne, Switzerland
[3] V le Univ 2, INFN LNL, I-35020 Legnaro, PD, Italy
[4] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20122 Milan, Italy
[5] Univ Modena & Reggio Emilia, Dipartimento Sci Fis Informat & Matematiche, Via Campi 213-A, I-41125 Modena, Italy
来源
JOURNAL OF INSTRUMENTATION | 2023年 / 18卷 / 09期
基金
瑞士国家科学基金会;
关键词
D O I
10.1088/1748-0221/18/09/C09002
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Consorzio RFX and INFN-LNL have designed, built and operated the compact radiofrequency negative ion source NIO1 (Negative Ion Optimization phase 1) with the aim of studying the production and acceleration of H- ions. In particular, NIO1 was designed to keep plasma generation and beam extraction continuously active for several hours. Since 2020 the production of negative ions at the plasma grid (the first grid of the acceleration system) has been enhanced by a Cs layer, deposited though active Cs evaporation in the source volume. For the negative ion sources applied to fusion neutral beam injectors, it is essential to keep the beam current and the fraction of co-extracted electrons stable for at least 1 h, against the consequences of Cs sputtering and redistribution operated by the plasma. The paper presents the latest results of the NIO1 source, in terms of caesiation process and beam performances during continuous (6+7 h) plasma pulses. Due to the small dimensions of the NIO1 source (20 cmx010 cm), the Cs density in the volume is high (1015+1016 m-3) and dominated by plasma-wall interaction. The maximum beam current density and minimum fraction of co-extracted electrons were respectively about 30 A/m2 and 2. Similarly to what done in other negative ion sources, the plasma grid temperature in NIO1 was raised for the first time, up to 80 & DEG;C, although this led to a minimal improvement of the beam current and to an increase of the co-extracted electron current. KEYWORDS: Ion sources (positive ions, negative ions, electron cyclotron resonance (ECR), electron beam (EBIS)); Plasma generation (laser-produced, RF, x ray-produced); Plasma diagnostics interferometry, spectroscopy and imaging
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Conceptual design and circuit analyses for the power supplies of the NIO1 experiment
    Recchia, M.
    Bigi, M.
    Cavenago, M.
    FUSION ENGINEERING AND DESIGN, 2011, 86 (6-8) : 1545 - 1548
  • [32] Long pulse operation of the KAMABOKO III negative ion source
    Boilson, D
    de Esch, HPL
    Hemsworth, RS
    Kashiwagi, M
    Massmann, P
    Svensson, L
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2002, 73 (02): : 1093 - 1095
  • [33] Volume and surface effects in Cs-free regimes in NIO1
    Cavenago, M.
    Barbisan, M.
    Delogu, R. S.
    Pimazzoni, A.
    Ugoletti, M.
    Antoni, V.
    Baltador, C.
    Martini, D.
    Poggi, C.
    Taccogna, F.
    Variale, V.
    Serianni, G.
    JOURNAL OF INSTRUMENTATION, 2023, 18 (09)
  • [34] Preliminary studies for a beam-generated plasma neutralizer test in NIO1
    Sartori, E.
    Veltri, P.
    Balbinot, L.
    Cavenago, M.
    Veranda, M.
    Antoni, V.
    Serianni, G.
    FIFTH INTERNATIONAL SYMPOSIUM ON NEGATIVE IONS, BEAMS AND SOURCES (NIBS 2016), 2017, 1869
  • [35] Negative ion yield in long pulse operation of the KAMABOKO III source
    Boilson, D
    Ellingboe, AR
    Faulkner, R
    Hemsworth, RS
    de Esch, HPL
    Krylov, A
    Massmann, P
    Svensson, L
    FUSION ENGINEERING AND DESIGN, 2005, 74 (1-4) : 295 - 298
  • [36] SHORT-PULSE OPERATION WITH THE SITEX NEGATIVE-ION SOURCE
    DAGENHART, WK
    STIRLING, WL
    BANIC, GM
    BARBER, GC
    PONTE, NS
    WHEALTON, JH
    AIP CONFERENCE PROCEEDINGS, 1984, (111) : 353 - 362
  • [37] DEVELOPMENT OF A LONG PULSE PENNING TYPE NEGATIVE-ION SOURCE
    DAGENHART, WK
    STIRLING, WL
    TSAI, CC
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1978, 23 (07): : 805 - 805
  • [38] Development of negative ion extractor in the high-power and long-pulse negative ion source for fusion application
    Kashiwagi, M.
    Umeda, N.
    Tobari, H.
    Kojima, A.
    Yoshida, M.
    Taniguchi, M.
    Dairaku, M.
    Maejima, T.
    Yamanaka, H.
    Watanabe, K.
    Inoue, T.
    Hanada, M.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (02):
  • [39] Finite elements numerical codes as primary tool to improve beam optics in NIO1
    Baltador, C.
    Cavenago, M.
    Veltri, P.
    Serianni, G.
    FIFTH INTERNATIONAL SYMPOSIUM ON NEGATIVE IONS, BEAMS AND SOURCES (NIBS 2016), 2017, 1869
  • [40] Characterization of the ITER model negative ion source during long pulse operation
    Hemsworth, R. S.
    Boilson, D.
    Crowley, B.
    Homfray, D.
    de Esch, H. P. L.
    Krylov, A.
    Svensson, L.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2006, 77 (03):