Continuous pulse advances in the negative ion source NIO1

被引:1
|
作者
Barbisan, M. [1 ]
Agnello, R. [1 ,2 ]
Cavenago, M. [3 ]
Delogu, R. S. [1 ]
Pimazzoni, A. [1 ]
Balconi, L. [4 ]
Barbato, P. [1 ]
Baseggio, L. [1 ]
Castagni, A. [1 ,2 ,5 ]
Duteil, B. Pouradier [1 ,2 ]
Franchin, L. [1 ]
Laterza, B. [1 ]
Molon, F. [1 ]
Maniero, M. [1 ]
Migliorato, L. [1 ]
Milazzo, R. [1 ]
Passalacqua, G. [1 ]
Poggi, C. [1 ]
Ravarotto, D. [1 ]
Rizzieri, R. [1 ]
Romanato, L. [1 ]
Rossetto, F. [1 ]
Trevisan, L. [1 ]
Ugoletti, M. [1 ,3 ]
Zaniol, B. [1 ]
Zucchetti, S. [1 ]
机构
[1] Univ Padua, Consorzio RFX, CNR, ENEA,INFN,Acciaierie Venete SpA, Cso Stati Uniti 4, I-35127 Padua, Italy
[2] Swiss Plasma Ctr SPC, EPFL, CH-1015 Lausanne, Switzerland
[3] V le Univ 2, INFN LNL, I-35020 Legnaro, PD, Italy
[4] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20122 Milan, Italy
[5] Univ Modena & Reggio Emilia, Dipartimento Sci Fis Informat & Matematiche, Via Campi 213-A, I-41125 Modena, Italy
来源
JOURNAL OF INSTRUMENTATION | 2023年 / 18卷 / 09期
基金
瑞士国家科学基金会;
关键词
D O I
10.1088/1748-0221/18/09/C09002
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Consorzio RFX and INFN-LNL have designed, built and operated the compact radiofrequency negative ion source NIO1 (Negative Ion Optimization phase 1) with the aim of studying the production and acceleration of H- ions. In particular, NIO1 was designed to keep plasma generation and beam extraction continuously active for several hours. Since 2020 the production of negative ions at the plasma grid (the first grid of the acceleration system) has been enhanced by a Cs layer, deposited though active Cs evaporation in the source volume. For the negative ion sources applied to fusion neutral beam injectors, it is essential to keep the beam current and the fraction of co-extracted electrons stable for at least 1 h, against the consequences of Cs sputtering and redistribution operated by the plasma. The paper presents the latest results of the NIO1 source, in terms of caesiation process and beam performances during continuous (6+7 h) plasma pulses. Due to the small dimensions of the NIO1 source (20 cmx010 cm), the Cs density in the volume is high (1015+1016 m-3) and dominated by plasma-wall interaction. The maximum beam current density and minimum fraction of co-extracted electrons were respectively about 30 A/m2 and 2. Similarly to what done in other negative ion sources, the plasma grid temperature in NIO1 was raised for the first time, up to 80 & DEG;C, although this led to a minimal improvement of the beam current and to an increase of the co-extracted electron current. KEYWORDS: Ion sources (positive ions, negative ions, electron cyclotron resonance (ECR), electron beam (EBIS)); Plasma generation (laser-produced, RF, x ray-produced); Plasma diagnostics interferometry, spectroscopy and imaging
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Status of NIO1 construction
    Cavenago, M.
    Fagotti, E.
    Poggi, M.
    Serianni, G.
    Antoni, V.
    Bigi, M.
    Fellin, F.
    Gazza, E.
    Recchia, M.
    Veltri, P.
    Petrenko, S.
    Kulevoy, T.
    SECOND INTERNATIONAL SYMPOSIUM ON NEGATIVE IONS, BEAMS AND SOURCES, 2011, 1390
  • [22] Background gas density and beam losses in NIO1 beam source
    Sartori, E.
    Veltri, P.
    Cavenago, M.
    Serianni, G.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (02):
  • [23] Electron Density and Temperature in NIO1 RF Source Operated in Oxygen and Argon
    Barbisan, M.
    Zaniol, B.
    Cavenago, M.
    Pasqualotto, R.
    Serianni, G.
    Zanini, M.
    FIFTH INTERNATIONAL SYMPOSIUM ON NEGATIVE IONS, BEAMS AND SOURCES (NIBS 2016), 2017, 1869
  • [24] The H- multiaperture source NIO1: gas conditioning and first cesiations
    Barbisan, M.
    Cavenago, M.
    Delogu, R. S.
    Pimazzoni, A.
    Poggi, C.
    Ugoletti, M.
    Variale, V.
    Antoni, V
    Ravarotto, D.
    Serianni, G.
    Baltador, C.
    Franchin, L.
    Minarello, A.
    Martini, D.
    Maniero, M.
    Rizzieri, R.
    Romanato, L.
    Rossetto, F.
    Taccogna, F.
    19TH INTERNATIONAL CONFERENCE ON ION SOURCES - ICIS2021, 2022, 2244
  • [25] Observation of beamlet displacement and parallelism in NIO1
    Ugoletti, M.
    Cavenago, M.
    Agnello, R.
    Barbisan, M.
    Delogu, R.
    Pimazzoni, A.
    Poggi, C.
    JOURNAL OF INSTRUMENTATION, 2023, 18 (10)
  • [26] The characterization and optimization of NIO1 ion source extraction aperture using a 3D particle-in-cell code
    Taccogna, F.
    Minelli, P.
    Cavenago, M.
    Veltri, P.
    Ippolito, N.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (02):
  • [27] Particle transport and heat loads in NIO1
    Fonnesu, N.
    Cavenago, M.
    Serianni, G.
    Veltri, P.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (02):
  • [28] First hydrogen operation of NIO1: Characterization of the source plasma by means of an optical emission spectroscopy diagnostic
    Barbisan, M.
    Baltador, C.
    Zaniol, B.
    Cavenago, M.
    Fantz, U.
    Pasqualotto, R.
    Serianni, G.
    Vialetto, L.
    Wuenderlich, D.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (02):
  • [29] Development of the long pulse negative ion source for ITER
    Hemsworth, RS
    Boilson, D
    Fanz, U
    Svensson, L
    de Esch, HPL
    Krylov, A
    Massmann, P
    Zaniol, B
    PRODUCTION AND NEUTRALIZATION OF NEGATIVE IONS AND BEAMS, 2005, 763 : 3 - 16
  • [30] A First Characterization of the NIO1 Particle Beam by Means of a Diagnostic Calorimeter
    Pimazzoni, A.
    Cavenago, M.
    Cervaro, V.
    Fasolo, D.
    Seriann, G.
    Tollin, M.
    Veltri, P.
    FIFTH INTERNATIONAL SYMPOSIUM ON NEGATIVE IONS, BEAMS AND SOURCES (NIBS 2016), 2017, 1869