CA-YOLOv5: Detection model for healthy and diseased silkworms in mixed conditions based on improved YOLOv5

被引:4
|
作者
Shi, Hongkang [1 ,2 ]
Xiao, Wenfu [2 ]
Zhu, Shiping [1 ,3 ,4 ]
Li, Linbo [1 ,2 ]
Zhang, Jianfei [2 ]
机构
[1] Southwest Univ, Coll Engn & Technol, Chongqing 400700, Peoples R China
[2] Sichuan Acad Agr Sci, Sericultural Res Inst, Nanchong 637000, Sichuan, Peoples R China
[3] Yibin Acad Southwest Univ, Yibin 644000, Sichuan, Peoples R China
[4] Southwest Univ, State Key Lab Resource Insects, Chongqing 400700, Peoples R China
关键词
diseased silkworm detection; YOLOv5; mixed conditions; image attention mechanism; object detection;
D O I
10.25165/j.ijabe.20231606.7854
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
The accurate identification and localization of diseased silkworms is an important task in the research of disease precision control technology and equipment development in the sericulture industry. However, the existing deep learning-based methods for this task are mainly based on image classification, which fails to provide the location information of diseased silkworms. To this end, this study proposed an object detection-based method for identifying and locating healthy and diseased silkworms. Images of mixed healthy and diseased silkworms were collected using a mobile phone, and the category and location of each silkworm were labeled using LabelImg as a labeling tool to construct an image dataset for object detection. Based on the one-step detection model YOLOv5s, the ConvNeXt-Attention-YOLOv5 (CA-YOLOv5) model was designed in which the large kernel with depth-wise separable convolution (7x7 dw-conv) of ConvNeXt was adopted to expand receptive fields and the channel attention mechanism ECANet was added to enhance the capability of feature extraction. Experiments showed that the mean average precision (mAP) values of CA-YOLOv5 for healthy and diseased silkworms reached 96.46%, which is 1.35% better than that achieved via YOLOv5s. At the same time, the overall performance of CA-YOLOv5 was significantly better than state-of-the-art one-step models, such as Single Shot MultiBox Detector (SSD), CenterNet, and EfficientDet, and even improved YOLOv5 using image attention mechanism and a lightweight backbone, like SENet-YOLOv5 and MobileNet-YOLOv5. The results of this study can provide an important basis for the accurate positioning of diseased silkworms in precision disease control technology and equipment development.
引用
收藏
页码:236 / 245
页数:10
相关论文
共 50 条
  • [41] Object Detection for Construction Waste Based on an Improved YOLOv5 Model
    Zhou, Qinghui
    Liu, Haoshi
    Qiu, Yuhang
    Zheng, Wuchao
    SUSTAINABILITY, 2023, 15 (01)
  • [42] Automatic detection of indoor occupancy based on improved YOLOv5 model
    Chao Wang
    Yunchu Zhang
    Yanfei Zhou
    Shaohan Sun
    Hanyuan Zhang
    Yepeng Wang
    Neural Computing and Applications, 2023, 35 : 2575 - 2599
  • [43] An Improved Forest Fire and Smoke Detection Model Based on YOLOv5
    Li, Junhui
    Xu, Renjie
    Liu, Yunfei
    FORESTS, 2023, 14 (04):
  • [44] Tunnel lining crack detection model based on improved YOLOv5
    Duan, Shuqian
    Zhang, Minghuan
    Qiu, Shili
    Xiong, Jiecheng
    Zhang, Hao
    Li, Chenyang
    Jiang, Quan
    Kou, Yongyuan
    TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2024, 147
  • [45] Anomaly Detection Model for Key Places Based on Improved YOLOv5
    Wang Yuanxin
    Yuan Deyu
    Meng, Yuyan
    Meng, Ding
    ARTIFICIAL INTELLIGENCE AND SECURITY, ICAIS 2022, PT II, 2022, 13339 : 51 - 61
  • [46] Automatic detection of indoor occupancy based on improved YOLOv5 model
    Wang, Chao
    Zhang, Yunchu
    Zhou, Yanfei
    Sun, Shaohan
    Zhang, Hanyuan
    Wang, Yepeng
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (03): : 2575 - 2599
  • [47] A Vehicle Recognition Model Based on Improved YOLOv5
    Shao, Lei
    Wu, Han
    Li, Chao
    Li, Ji
    ELECTRONICS, 2023, 12 (06)
  • [48] Bird Droppings Defects Detection in Photovoltaic Modules Based on CA-YOLOv5
    Liu, Linjun
    Li, Qiong
    Liao, Xu
    Wu, Wenbao
    PROCESSES, 2024, 12 (06)
  • [49] Improved YOLOv5 Based on the Mobilevit Backbone for the Detection of Steel Surface Defects Improved YOLOv5 based on the mobilevit backbone and BiFPN
    Qiu, Kun
    Wang, Changkun
    PROCEEDINGS OF 2024 3RD INTERNATIONAL CONFERENCE ON CYBER SECURITY, ARTIFICIAL INTELLIGENCE AND DIGITAL ECONOMY, CSAIDE 2024, 2024, : 305 - 309
  • [50] YOLOv5-R: lightweight real-time detection based on improved YOLOv5
    Ren, Jian
    Wang, Zhijie
    Zhang, Yifan
    Liao, Lei
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (03)